
Università degli Studi di Torino
Dipartimento di Informatica

Corso di Laurea Magistrale in Informatica
Indirizzo "Realtà Virtuale e Multimedialità"

Anno Accademico 2021/2022

Tesi di Laurea

MPAI-SPG: an architecture for game server
support in network communication issues and

cheating detection

Relatore: Maurizio Lucenteforte
Co-Relatore Interno: Davide Cavagnino
Co-Relatore Esterno: Marco Mazzaglia
Co-Relatore Esterno: Leonardo Chiariglione

Candidato:
Giorgio Gamba

Matricola 833313

A mio padre.

Contents

1 Abstract 5

2 MPAI Commitee 6
2.1 The MPAI Standard workflow . 7

3 Libraries 8
3.1 ML-Agents . 8
3.2 Barracuda . 9
3.3 TensorFlow . 9
3.4 Unity . 10

4 Problem and architecture explanation 12
4.1 Authoritative Server . 13
4.2 MPAI-SPG Authoritative Server architecture 14
4.3 Lag compensation . 15

5 Pong Offline creation 18
5.1 Game Manager . 19
5.2 Ball movement . 20

5.2.1 Classic Pong Ball movement 20
5.2.2 Implemented Ball movement 20

5.3 Player’s movement . 22

6 Neural Networks for automatic movement 24
6.1 Reinforcement Learning . 24
6.2 ML-Agents Neural Network . 26
6.3 ML-Agents methods . 27
6.4 Implementation tests . 28

6.4.1 First implementation . 28
6.4.2 Second implementation 29

2

Contents

6.5 Raycasting algorithm . 32
6.5.1 Initial Raycasting . 33
6.5.2 Recursive method . 35

7 Log files production 39
7.1 Datasets . 39
7.2 CSV files . 41
7.3 Record Writer . 42

8 Refined MPAI-SPG Architecture 47
8.1 Predictive Neural Networks attributes examples 49

9 Predictive Neural Networks 51
9.1 Problem explanation . 51
9.2 Neural Networks types . 52

9.2.1 Multilayer Perceptron . 53
9.2.2 Recurrent Neural Networks 56
9.2.3 Long Short-Term Neural Networks 58
9.2.4 LSTM Cells . 60

9.3 Reasons why to choose LSTM NNs 62

10 Refined architecture components introduction inside Pong 63
10.1 Dispatcher . 64
10.2 Prediction Engines . 66

10.2.1 Start method . 66
10.2.2 Prediction routine . 68
10.2.3 New Data . 72

10.3 Collector . 73

11 Neural Networks Study 75
11.1 Training script . 76

11.1.1 Input preprocessing . 77
11.1.2 Neural Network definition 82
11.1.3 Neural Network training 83
11.1.4 Neural Network evaluation 84

11.2 Neural Networks tests . 84
11.2.1 NN4 . 85
11.2.2 NN6 . 88
11.2.3 NN9 . 90
11.2.4 NN10 . 91
11.2.5 Final results . 92

3

Contents

12 Network latency simulation 95
12.1 Client lag simulation . 95
12.2 Server Lag computation . 96
12.3 Qualitative tests . 97
12.4 Error computation . 100
12.5 Neural Networks results . 101

12.5.1 NN4 . 101
12.5.2 NN6 . 103
12.5.3 NN9 . 104
12.5.4 NN10 . 106

13 Conclusion and future works 108

14 Machines 109
14.1 Macbook Pro . 109
14.2 NNTA . 109
14.3 LPA . 109

15 Ringraziamenti 110

4

Chapter 1

Abstract

In this Master’s thesis are collected the experiences I made during my partici-
pation to the “MPAI-SPG” project, a research work done for the MPAI Standard
Commitee with the collaboration of the Turin University’s Computer Science
Department (represented by professors Davide Cavagnino and Maurizio Lu-
centeforte) and Synesthesia (represented by professor Marco Mazzaglia).

Project’s name stands for “Server Predictive Game”, and has the objective
to build an authoritative server architecture able to predict client’s commands,
and in general the game behavior, in order to avoid network latency problems
and players cheating. This research project adopts as Use Case the infamous
videogame “Pong”, rebuilt in an online manner implementing a classic Authori-
tative Server architecture. Given this application, neural networks for automatic
players movement have been developed, enabling me to collect a huge dataset
of game states and create a training set. This collection has been used to train
and evaluate a set of neural networks able to make predictions. A huge experi-
mentation on which kind of neural architecture best suits the problem together
with hyperparameters tuning has been done and, once trained, these networks
have been inserted inside the Pong Online project. In order to use them, I im-
plemented the components introduced by SPG and I created a real application
of the Predictive architecture. Once this system has been developed, I studied
its behavior in order to proceed with the MPAI-SPG research.

5

Chapter 2

MPAI Commitee

MPAI is a standard committee based in Geneva with the aim to create new
technological specifications in Computer Science using Artificial Intelligence in
many fields of research, like Video Compression (MPAI-EVC), Context-based
Audio Enhancement (MPAI-CAE), Human-Machine conversation (MPAI-MMC)
to cite some of them.

As explained in [8], MPAI ("Moving Picture, Audio and Data Coding") is a
non-profit organization formed by many collaborating research groups with the
objective to use data (generic, or from automotive, media, health) in an efficient
way, in order to develop technical specifications in the fields of Audio, Video and
Data Coding. It is inspired by the MPEG work performed during the past years,
but, this time, MPAI wants to fill the gap between the standard specifications
made by the commitee and the practical use of this instruments inside everyday
technology, definining IPR Guidelines like, for example, Framework licenses.

The MPAI Organization is formed by many different entities, where the most
important is the "General Assembly" (GA), formed by Principal Members (with
the right to vote) and the Associate Members (not able to vote, but able to
partecipate to the development of the Technological Specifications). Another
body of the MPAI Organization, the "Boards of Directors" (BD), whose president
is Leonardo Chiariglione, is the one calling the monthly General Meeting of
the General Assembly. Other bodies inside the Commitee are the "Advisory
Committees", the "Standing Committees", the "Development Committees" (DC)
and the "Secretariat".

6

2.1. The MPAI Standard workflow

2.1 The MPAI Standard workflow

Given the set of research groups working on different fields (SPG belongs to
them), each one of them has to follow a rigid development process in order
to define a standard. This process is structured in a (6+1)-steps workflow as
follows:

1. "Interest collection": collection of use cases

2. "Use Cases": Proposal of use cases, together with their description and
merge with compatible and analogous cases

3. "Functional Requirements": functional requirements are extracted by the
research group. These will have to be satisfied by the standard and the
use case implemented

4. "Commercial Requirements": the Framework License will have to be de-
veloped and approved

5. "Call for technologies": a document in prepared introducing to the stan-
dard, looking for companies able to develop compatible technologies that
satisfy commercial and functional requirements

6. "Standard development": the standard is developed by a specific Com-
mittee

7. "Community comments": the standard developed at the previous stage is
published to the community in order to receive comments

8. "MPAI Standard": the commented and revised standard is approved by
the General Assembly and made accessible to everyone

A single research project goes to the next stage by General assembly ap-
proval, following the monthly Assembly where each research group talks about
its improvements. At the moment of the writing of this thesis, SPG is at the
"Functional Requirements" step, defining a prototype able to explain the aim
and the funcionalities researched.

7

Chapter 3

Libraries

In the following sections, the libraries and frameworks adopted during my re-
search are introduced. Except the Unity IDE, all of them concern Artificial Intel-
ligence, applied in different contexts.

3.1 ML-Agents

ML-Agents ("Unity Machine Learning Agents Toolkit") is an open-source frame-
work developed in order to create agents able to execute actions in a game
environment, trained using different kinds of available Machine Learning tech-
niques. It is mainly used for bots creation, employed inside gameplay and game
testing.

The main development workflow of this framework, as cited in [4], is based
on a first step, called "Training" step, and the following "Inference" step. In
the former one, the agent is trained inside the Unity game scene using some
kind of learning algorithm, chosen by the programmer, based on state-of-the-
art PyTorch implementations. This algorithm is implemented through a series
of C-Sharp methods written by the programmer and invoked during the train-
ing through the "Play" mode offered by Unity. At the end of this first step, a
neural network representing the agent’s “brain” is returned, that can be used to
automatically control the same agent. Some of the training algorithms offered
by ML-Agents Framework are Reinforcement Learning, Imitation Learning and
NeuroEvolution. In this research project, MLAgents is used in the first part
of the development in order to create paddles able to automatically play Pong.
This way, I was able to produce a huge game states dataset for neural networks
training.

8

3.2. Barracuda

Figure 3.1: Official ML-Agents Framework logo

3.2 Barracuda

Barracuda is a Unity official framework for inference execution, developed for
cross-platform compatibility. In other words, Barracuda can be integrated inside
a project in order to use a neural network. Barracuda also offers the opportunity
to create neural networks inside Unity, but in SPG it is only adopted for game
states prediction through inference. Its way of working is very simple: the pro-
grammer has to build an input data tensor which will be passed as input to the
inference engine, which returns an output tensor. In this project, Barracuda is
used inside the server implementation in order to execute predictions through
the "MPAI-SPG Predictor" Game Object. In this way, we can take input data
from game state and return prediction results inside the same scene.

3.3 TensorFlow

This open source framework was developed by Google for Artificial Intelligence
and Machine Learning applications. It is used in my research for deep neural
network trainings and evaluations. This library is available in many of the most
popular programming languages, but mostly important enables programmers to
use its Python API called "Keras", which permits users to create very complex
and sophisticated neural networks in a very simple way. In TensorFlow are
available quite the totality of architectures developed during the years, together
with a huge variety of support tools.

TensorFlow works defining dataflow graphs in order to show how data move
through a graph containing a series of operations, taking as input and return-
ing as output a multimodal matrix called "tensor". For this reason, framework’s

9

3.4. Unity

Figure 3.2: Official TensorFlow logo

name comes from the combination of “tensor”, and “flow”, the movement of the
matrix performing operations inside the graph. Before using a neural network,
it is necessary to define the input tensor, with a fixed set of dimensions. This
framework makes easy the use of GPU in order to speed up operations. Be-
cause of their architectures, "General Purpose Units" or "Graphics Processing
Units" (GPUs) are suitable for repetitive operations, like the one performed dur-
ing NN algorithms or graphical rendering, and graphs implemented in Tensor-
Flow are very suitable for accelerators because of their parallelizable structure.
As cited in [11], a graph inside TensorFlow is a data structure containing a
set of operation objects, representing computational units, and tensor objects,
representing sets of data flowing inside the graph.

There is a huge advantage using graphs, over the parallelizable structure,
because using their data representation they can be stored in order to make
partial trainings in different moments, also allowing to use objects in environ-
ments not containing a Python engine. Graphs are also very suitable for classi-
cal neural networks operations like gradient descent during the backward prop-
agation, a tecnique used during training in order to update weights.

3.4 Unity

Unity is one of the most popular game engines currently used for 3D and 2D
videogames development. It offers an IDE (Integrated Development Environ-
ment) able to execute many of operations necessary for a videogame execu-
tion, like graphic rendering and user’s input management, enabling the creation
of interactive applications. It can also be used for cinematic, not necessarly
involving user’s actions. This IDE gives a lot of support tools for game objects

10

3.4. Unity

management. It is possible to import 3D models (Unity is not designed for
Computer graphics modeling) from "Blender" or "Maya" and easily associate
colliders to enable the model to interact with the Physics Engine. Unity is de-
veloped in C#, and all the scripts used inside a Unity project have to be written
using this language. In my research project, this game engine has been used
for Pong implementation (both Online and Offline versions) and the subsequent
MPAI-SPG Digital Twin development.

Figure 3.3: Official Unity logo

11

Chapter 4

Problem and architecture
explanation

All the games developed use some kind of Internet connection in order to work.
This kind of functionality is used by default by consoles and gaming computers.
Also if the Web is now very spread inside the game industry and a huge variety
of competitive multiplayer games are now very popular (like “Fortnite” by Epic
Games, “Apex Legends” by Respawn Enterteinment or “Call of Duty: Warzone”
by Activision), some kind of problems still happen inside player’s experience,
like network lag problems that spoils competitive matches all over the world, or
cheaters able to go over the game rules and take an advantage over the other
players. The aim of MPAI-SPG is to overpass these problems using Artificial
Intelligence applications. Given the growing popularity of GPUs (Graphic Pro-
cessing Units), already used for video rendering inside game computers and
consoles, these AI applications can run very smoothly and be integrated with
videogames, because GPUs are, in addition, used for neural networks training
and inference.

My contribution to the MPAI-SPG research starts from the Pong Online
version. It has been developed by Antonio Guarino (Turin University’s Com-
puter Science Department). This application uses the "Photon Online Service"
framework developed for Unity [10] and Gambetta’s studies about "Lag Com-
pensation" (see section 4.3).

MPAI-SPG was born in order to correct problems caused by network packet
loss and cheatings that can happen inside a videogame based on an Authori-
tative Server architecture. Examples of games using this kind of structure are
“Rocket League” by Epic Games, “Overwatch” by Blizzard Games or “League
of Legends” by Riot Games, to cite some of them.

12

4.1. Authoritative Server

Figure 4.1: In order: "League of Legends", "Overwatch" and "Rocket League"
official logos

4.1 Authoritative Server

This kind of structure is used inside videogames industry in order to develop on-
line multiplayer applications, especially competitive games, like the ones cited
before, with the aim to avoid the player to have some kind of advantage over
the others. Additionally, an authoritative server can correct the game state (the
set of transforms of every game object inside the scene, together with all the
important informations), in order to guarantee a consistent state also if a client
is having network latency problems. This structure is based on the fact that
each client joining the game sends user’s commands to the server, that vali-
dates received data and updates the game state through this new knowledge.
Then, the new game state is sent to the clients, that will update their rendered
scene.

As cited in [1], this setup avoids many types of hacks, also very sophisti-
cated, like upgraded velocity. For example, if a client moves faster, for some
time it will be in a “hacked” position, but the server, knowing game rules, will
take it back to the correct position. This way, it is the server to determine and
validate players’ position inside the field, so that all the connected clients will be
subject to the same game rules. This is the reason why this architecture takes
this name: because the server application has got an authority over clients,
imposing game rules and determining the correct game state.

As we can see from the image 4.2, each client gets user’s inputs and send
them to the server through the network. The Server, who owns the current
correct game state, updates it and returns the new state to the clients, that will
render the next frame.

13

4.2. MPAI-SPG Authoritative Server architecture

Figure 4.2: Classical Authoritative Server Architecture

Like every implementation, this setup has got pros but also cons.
Pros:

1. The server controls the game experience for all the connected clients

2. Hacking is much harder to reach, making a game suitable for a compet-
itive experience, because the server can check game rules and make
them respected

3. All informations are saved inside the server, so the uninstallation of the
game from a user’s machine doesn’t lose data.

Cons:

1. The server will be more complex because it will have to execute much
more computations

2. In order to reach a correct game experience, the client needs a prediction
system, because network latency is also possibile from server to client

Different kinds of authoritative server are available, like "Fully-Authoritative",
"Semi-Authoritative" and "P2P".

4.2 MPAI-SPG Authoritative Server architecture

In picture 4.3, we can see the MPAI-SPG Authoritative Server Architecture de-
fined by Marco Mazzaglia and Leonardo Chiariglione. This architecture shows

14

4.3. Lag compensation

the server structure composed by two different parts, excluding Client 1 and
Client 2 (violet boxes)

Figure 4.3: MPAI-SPG Architecture

The first part is the “Online Game Server” (set of blue boxes). This struc-
ture represents the classical "client-server" way of working, where the server
gets data from clients (command data, CD) going inside the Game State En-
gine. At this point, inside the "Online Game Server", there is a data exchange
between the "Game State Engine" and the 3 associated sub-engines: "Physics
Engine", "Behaviour Engine" and "Rules Engine". (Pay attention, this transfer
depends on the IDE used for game creation, like, for example, "Unity" or "Unreal
Engine"). Each one of these sub-systems has the objective to execute some
computation given GM received from the "Game State Engine". They return
GM’ in order to create the new game State (GS), that is sent back to the clients.

The Predictive Server (the Digital Twin) is on the left, composed by the
green boxes connected to the blue ones with the data flow visibile in figure 4.3.
These components work together in order to compute the state-that-should-be,
receiving the informations about the game states calculated before and getting
the next one with a method different from the one used by the "Online Game
Server". One of the objectives of this research is to find this new method.

4.3 Lag compensation

As we learned from section 4.1, the way of working of an Authoritative Server is
based on a specific routing (client commands to the server, game state update
and then sent back to the client) that can make a game very slow, not just be-
cause of the routing made, but especially because the connection between the
server and the clients can be subject to packet loss or network congestion. In

15

4.3. Lag compensation

order to avoid this kind of problems, Gabriel Gambetta in its articles [2] explains
a series of concepts that bring to its tecnique called "Lag compensation".

This tecnique is based on different concepts, where one of them is the
"Client Prediction". Assuming to observe a non-cheating player, we can imag-
ine the player sending its new commands to the server, and then instantly ren-
der its new scene without waiting for server’s response. This way, the game
inside the server (that in an authoritative architecture is the most important
part) will still be consistent and kept authoritative, because client’s render, also
if wrong, won’t affect the one returned from the server, calculated on its own.
Instantly render the new frame inside the client can also avoid waiting for the
updated render from the client, making a better flow inside the game experi-
ence.

Assuming the delay taken by the information to route from client to server
and return, the server sends back the updated and correct state also if the
player has done another action in between. This brings game experience is-
sues, because the user would receive informations about past actions, making
the client ungovernable. In order to avoid this problem, another concept from
Gambetta’s studies comes in help, the "Server Reconciliation". In order to
understand the problem, we have to think that the client is rendering the game
in the present, while the server is knowing the past, because it renders the state
based on old commands, while the client sends new ones.

Server Reconciliation labels commands sent by client, and the server, when
returning its new render, specifies that it is based on that old listed input con-
trols. This way, the client can render its game state through Client Prediction,
using commands starting from the new server render. For example, suppose
the client send 3 commands, named cdm1, cdm2 and cdm3. The server re-
ceives them, calculates the new game state and then returns the new graphic
render, names rdr1. While it is receiving new commands from the player, the
client receives rdr1, updates its state, because we are still in a authoritative
server, and updates it with the new commands still not analyzed from the server.
The result of this series of operations is a fluid set of consecutive renders inside
player’s applications, like a single-player game.

The scenario expressed so far can work for a little number of players con-
nected to the same server, but it is too expensive in terms of CPU load and
bandwidth for a huge set of clients, because of the informations sent through
the network. In other words, this approach is not scalable, especially in a real-
time rendering (at least 30 times per second). A first simple solution would be,
inside the server, to render at low frequency (like 10 times per second) and
create a player’s commands queue. Supposing to call the time between two
consecutive frames "timestep", at each timestep the server updates the state

16

4.3. Lag compensation

using informations inside the queue, containing all the commands from all the
clients, and then cleans it.

In extreme situations, where there are a lot of players making very fast
movements, like 3D First Person Shooters, the way of working expressed so
far can be very inadeguate, because the player could see the others teleport-
ing every timestep seconds from one position to another (Note that this kind
of concepts can be applied to every kind of variables inside the game). The
solution to this problem is to show the positions of the other players in the past
relative to the current one. This shows the current player in the correct position,
while the other ones in the position at the render before. Others’ position from
the past timestep to the current one is interpolated using Entity Interpolation.
Note that this way every player will see a slightly different render of the same
game, but with little timesteps this doesn’t affect the game experience.

Finally, we’re arriving to the concept of the "Lag Compensation". Given
the concepts expressed before, we could think that playing with users at past
positions could affect the experience, making, for example, the First Player
Shooter unable to shoot correctly to the others. Suppose we are still working
on this kind of game, and we are shooting to an adversary. The client, when en-
abling the trigger of the gun, sends complete informations about the exact time
the action was performed. The server, knowing everything happened before
because of the informations received by all the clients in the past, can recon-
struct the old states and then see if the adversary has been correctly shot,
recreating the condition of the shoot. Then, the server updates the game state
at that point in time and updates the clients.

Gambetta’s concepts expressed in [2] are an important part inside the Pong
Online implementation made by Antonio Guarino, together with the Photon On-
line service. These two elements together permit to create a fully authoritative
server architecture, which will be the study field of my future researches inside
this thesis.

17

Chapter 5

Pong Offline creation

The first step of my research project was the creation of my own Pong imple-
mentation in order to study the use case and create automatic movement for
paddles. Pong is a 2D, 1 vs 1, Ping Pong simulation game (where it takes its
name) released by Atari Game Company in 1972. It is very important inside
videogame history because it is one of the first commercialized video games
ever and it was very popular in those years. It was first released as an Arcade
game in 1972 and then rebuilt as a stand-alone console in 1975. The game is
basically composed by a field with a ball and two paddles, each one controlled
by one player, or one of them controlled by the computer in case of a single
player match. Each paddle can only vertically move (on the Y axis) with the
aim to hit the ball and make it pass behind the other player. Each time a player
can make the ball go beyond the other, it scores one point. The total score sit-
uation is displayed in the center of the rendered field. The first player reaching
10 points wins the game. During the years, many extensions of this game were
developed with new rules, like, for example, ball acceleration at each paddle
hit. All these new rules have the objective to make the game more competitive
and less masterable by the players, making it more intriguing.

I recreated, inside the Unity Editor, this game defining a fixed dimension
camera space and putting, first of all, 4 2D BoxColliders covering field sides.
This way, the ball, provided itself with a CircleCollider, isn’t able to pass over the
field, creating this way the collision and bouncing behavior. Paddles and ball
are represented in Unity as distinct Game Objects. Paddles are defined using a
simple rectangular sprite, while the ball has been defined using a circular sprite.

Ball game object has various components:

• Rigidbody2D: this component says to the Unity Game Engine that the as-
sociated game object is considered by the Physics engine. This means

18

5.1. Game Manager

that the object will be subject to classic physics rules that control the
scene. Ball has got a mass of 0.1 Kg and a discrete collision detection.
Using the Rigidbody2D also enables the programmer to easly get infor-
mations about the object’s velocity accessing to its "velocity" private field
and avoid to manually calculate it

• SpriteRenderer: used to graphically represent the object. In the Pong
case, where all the game objects have got only 2 dimensions, it is neces-
sary because it contains the pointer to the sprite.

• Circle Collider: this kind of component is necessary to enable the collision
detection with the other game objects present in the scene. Thanks to this
component, the ball is able to collide with field walls and paddles

• Ball Controller: custom C-Sharp script implemented by me in order to
create the Pong ball movement

• LineRenderer: Unity built-in component used to have a graphical feed-
back about how the Raycasting Algorithm is working

Inside the classic Pong game, there are two players on the field, each one
represented by a paddle. Paddle game object is composed by the subsequent
elements:

1. Sprite Renderer: it has got the same aim of the ball’s one

2. Box Collider: it creates a rectangular collider around the game object,
following the sprite’s shape, in order to enable collision detection for this
object

3. Rigidbody2D: enables the Physics Engine’s action on the game object,
applying a discrete collision detection together with “kinematic” body type

5.1 Game Manager

This script has the simple aim to keep track of players’ score inside the game
and display it on the GUI. It uses two static integer variables representing
scores, updated depending on the side wall that has been hit by the ball. The
method "OnGUI" manages the Graphical interface components, and reacts to
the “Restart” button, resetting players’ score.

19

5.2. Ball movement

5.2 Ball movement

5.2.1 Classic Pong Ball movement

Ball movement inside Pong follows a simple rule: the ball hits a collider (a
wall or a paddle) in a specific direction, and it is reflected on the X or Y axis
using Fresnel rule. If the ball hits a vertical collider, it is reflected respect to
the X axis, while if it hits an horizontal collider, the reflection axis is the Y. For
example, if the ball hits the right paddle, coming from the left, it will go in the
specular direction to the X axis. Game field is a rectangular surface whose
sides correspond to camera limits. It is a 16:9 view in a 2D point of view, so we
only need the X and Y axis

Figure 5.1: Pong Offline example screen

5.2.2 Implemented Ball movement

Ball is automatically controlled using a script called "BallControl.cs" that ex-
tends the Unity "MonoBehaviour" class. At game start, ball can randomly
choose between 4 starting directions, defined as 2D vectors like, for exam-
ple, Vector2D(16, 11). When a new direction is chosen, a force is applied to
the ball, which starts moving on that direction with fixed speed. Every time
the ball catches a collision, its speed is calculated from the velocity vector and
its reflected direction is calculated using the classic Pong rule. This reflected
vector is computed using Unity built-in method "Reflect", which takes as argu-
ments the velocity vector and the reflection axis (that, in our case, is the normal
to the collision point). Then, the new velocity vector is calculated multiplying

20

5.2. Ball movement

the reflected direction with the speed and used to overwrite ball’s Rigidbody2D
velocity component.

1 void OnCollisionEnter2D(Collision2D coll) {
2 var speed = rb2d.velocity.magnitude;
3 // First argument is the direction, second one is the normal
4 var direction = Vector2.Reflect(lastVelocity.normalized,coll.

contacts[0].normal);
5
6 rb2d.velocity = direction * speed;
7 }

Listing 5.1: "OnCollisionEnter2D" method code

"BallControl.cs" also contains informations about scoring. Ball has got a col-
lider component with an enabled trigger, which invokes the "OnTriggerEnter2D"
method every time it is activated. If the colliding object is a side wall, the oppo-
site paddle invokes its "Goal" method, that makes a score upgrade through the
GameManager’s static integer variable. Also, informations about the hit target
are updated for MPAI-SPG logs construction.

1 void OnTriggerEnter2D(Collider2D collision) {
2 // if the ball collides with the right wall
3 if (collision.gameObject.name.Equals("RightWall")) {
4 paddle1.Goal(hits);
5 hitTarget = "RightWall";
6 // if the ball collides with the left wall
7 } else if (collision.gameObject.name.Equals("LeftWall")) {
8 paddle2.Goal(hits);
9 hitTarget = "LeftWall";

10 }
11 }

Listing 5.2: "OnTriggerEnter2D" method code

As we can see from image 5.2, given the blue dot representing the ball, the
red vectors representing ball’s direction before and after wall collision, and the
green line representing the top wall’s normal, we can see the reflective behavior
of the ball when hitting the top wall. The sphere goes on until it hits the wall,
then the collision’s normal axis is taken and, using Fresnel’s Rule, the reflected
direction is calculated: the angle between the entering vector and the normal is
equal to the angle from the normal axis to the reflected vector.

21

5.3. Player’s movement

Figure 5.2: Example of reflection movement inside Pong

5.3 Player’s movement

Player’s paddle movements are defined inside the "PlayerControls.cs" script.
It is a custom script (that implements Unity "Monobehaviour" class) and so it
defines the "Update" method. This function is invoked at each frame, and into
it player’s movement is controlled and constrained by the field limits (the max-
imum Y value is 2.25f). Defined player’s speed ("speed") as a constant, user
sends to the game an input through its controller. It sends only a value at a
time because just the Y axis movement is required. If the received input is pos-
itive, then player’s Y velocity value is set to speed, otherwise it is set to -speed,
so player’s movement is just a velocity update. In addition, informations about
player’s movement are recorded in order to perform the log creation following
MPAI-SPG formal rules.

1 void Update () {
2 //Constraining player’s position
3 var pos = transform.localPosition; //getting current player’s

position
4 //If position exceedes field bounds, it is overwritten
5 if (pos.y > boundY) {
6 pos.y = boundY;
7 } else if (pos.y < -boundY) {
8 pos.y = -boundY;
9 }

10 transform.localPosition = pos; //updating player game object
position

11
12 // Translating player
13 float moveY = Input.GetAxis("Vertical"); //getting player’s

input info
14 Rigidbody2D rb = GetComponent<Rigidbody2D>();

22

5.3. Player’s movement

15 var vel = rb.velocity; // getting velocity vector
16 if (moveY > 0) { //go up
17 vel.y = speed;
18 action = "Up";
19 } else if (moveY < 0) { //go down
20 vel.y = -speed;
21 action = "Down";
22 } else { //Idle
23 vel.y = 0;
24 action = "Idle";
25 }
26 rb.velocity = vel; //updating player’s velocity
27 }

Listing 5.3: PlayerControls.cs "Update" method code

As we can notice, Pong is a very simple videogame, very suitable as SPG
use case because it can permit us to think about complex problems through
simple examples, also keeping a low number of factors to manage inside the
game.

23

Chapter 6

Neural Networks for automatic
movement

In order to create a huge dataset to train AIs that will form the SPG ecosystem,
I thought about a method to automatically move players inside my Pong Offline
application and record their actions while playing. Each Pong match will be
observed by a game object called "Record Writer", which will keep track of all
the physical quantities listed in the SPG document that will have to be predicted.

To create a paddle able to play without user’s support, I used the "ML-
Agents" framework (see 3.1), toolkit created to define neural networks able to
control an Agent inside the game.

6.1 Reinforcement Learning

ML-Agents offers multiple training methods, listed in [6], and the one I’ve cho-
sen is Reinforcement Learning, one of the three classical Machine Learn-
ing Paradigms together with "Unsupervised Learning" and "Supervised Learn-
ing". This kind of training is based on the concept of “reward maximization”,
achieved through a Reward Cycle (figure 6.1 based on 4 principal steps, gen-
erally defined as:

1. Environment Update: the scene the agent is involved in is updated at
each frame consequently to agent’s actions

2. Environment Analysis: the agent analyzes through a sensor some of the
elements present inside the scene in order to determine its next action

24

6.1. Reinforcement Learning

3. Agent’s action: the agent, given observed data got at the previous step,
determines an action to perform and executes it

4. Reward: the agent receives a positive or negative feedback depending
on the fact the action he has just performed is correct or not. This kind
of parameters are determined by the programmer and the agent tends to
maximize this positive value in order to act always in a correct way

Generally speaking, the agent is constantly making decisions about the
actions to perform, given its objective to achieve (the function maximization)
and its view of the world (the set of observed physical quantities). As explained
in [7], through the Reinforcement Learning algorithm we want to learn a policy,
a mapping between observations and actions.

Figure 6.1: Reinforcement Learning Cycle

During learning, ML-Agents trains a neural network representing the “en-
gine” or “brain” of the agent. This takes in input the observed world data and
returns a specific action to execute. Actions are defined as a vector of values
returned by the NN, with each vector’s dimension referring to a modification to
perform inside the agent parameter. For example, given the Pong use case,
the only action the agent can perform is the movement along the Y axis, so the
developed NN will return a one-position vector (so, just one value) containing
the offset to apply to the y component of the transform’s position.

ML-Agents uses a time subdivision defined through an "Episode". During
this interval, the agent performs the Reinforcement Learning cycle until the
max_step value is reached, where a step is defined as "an atomic change
of the engine that happens between Agent decisions", as determined in [5].
Alternatively, an episode can be ended by the programmer invoking the "EndE-
pisode" method.

25

6.2. ML-Agents Neural Network

6.2 ML-Agents Neural Network

ML-Agents lets the programmer define neural network’s hyperparameters and
train it through the Unity environment. This NN is determined inside a yaml
file, which writes all the parameters, partially displayed below. Referring to the
Pong training, an example of network is defined as follows:

1 default_settings: null
2 behaviors:
3 PlayPong: # name of the trained Neural Network
4 trainer_type: ppo
5 hyperparameters: # fundamental hyperparameters of the NN
6 batch_size: 1024
7 buffer_size: 2048
8 learning_rate: 0.0003
9 beta: 0.0005

10 epsilon: 0.2
11 lambd: 0.95
12 num_epoch: 8
13 learning_rate_schedule: linear
14 network_settings:
15 normalize: false
16 hidden_units: 64
17 num_layers: 1
18 vis_encode_type: simple
19 memory: null
20 goal_conditioning_type: hyper
21 max_steps: 5000000
22 time_horizon: 64
23 summary_freq: 10000

Listing 6.1: ML-Agents Neural Network YAML file

This yaml file is passed as argument to the learning command "mlagents-
learn". As we can see, the network uses the "Proximal Policy Optimization"
(PPO), a Policy Grandient algorithm developed by OpenAI used to create a
connection between observations and actions. PPO is a method which trains
a stochastic policy. In few words, the agent, collecting observations from the
environment, returns an output, while the critic method gives the expected re-
wards for the input data given. A Policy Gradient method is used when an
agent, given input data, doesn’t know exactly which would be the best move,
so it chooses through the policy gradients. Generally talking, Policy Gradient
methods are not very strong because they are hypersensible to hyperparam-
eters, meaning that changing a bit some parameters, the obtained results are
way different. PPO wants to remove this correlation between parameters and
algorithm performance.

26

6.3. ML-Agents methods

Referring to the yaml file 6.1, the training set is divided in batches of 1024
elements each and the learning rate for weight update is equal to 0.0003. The
training is performed in 8 epochs.

6.3 ML-Agents methods

For the purposes of being correctly integrated inside a Unity project, ML-Agents
requires the implementation of abstract methods belonging to the "Agent" class
through a custom script extending it. Inside programmer’s script, the following
methods will be overridden:

1. "CollectObservations": gets all necessary input informations for the Agent’s
neural network execution, passing them as argument to the "AddObser-
vation" method of the "VectorSensor" class. For example, suppose we
want to observe a object’s position, then the code will be

1 // Class definition extending "Agent" class
2 public class PlayerControls : Agent {
3 public override void CollectObservations(VectorSensor

sensor) {
4 sensor.AddObservation(object.transform.position);
5 }
6 }

Listing 6.2: "CollectObservations" method example

2. "OnEpisodeBegin": determines the actions to perform at the beginning of
an ML-Agents episode

3. "OnActionReceived": on this method, game state is updated using infor-
mations returned by the NN and applied to the agent, which executes
some action. For example, supposing we want to move the agent on the
X axis, then we have to access to the "ContinuousActions" array compo-
nent of the "ActionBuffers" class. The resulting code will be like this:

1 public override void OnActionReceived(ActionBuffers actions
) {

2 float xOffset = actions.ContinuousActions[0];
3 object.transform.position += new Vector3(xOffset, 0, 0) *

Time.deltaTime * playerSpeed;
4 }

Listing 6.3: "OnActionReceived" method example

27

6.4. Implementation tests

4. "Heuristic": method employed when we want to “manually” use the agent,
controlling it with some kind of input. It bypasses the neural network com-
putation, so the object cannot move on its own. It consists of overwriting
the "ContinuousActions" array cited at the previous point with the infor-
mation got from the input manager. Here’s an example of implementation

1 public override void Heuristic(in ActionBuffers actionsOut)
{

2 ActionSegment<float> continuousActions = actionsOut.
ContinuousActions;

3 continuousActions[0] = Input.GetAxis("Vertical");
4 }

Listing 6.4: "Heuristic" method implementation example

6.4 Implementation tests

A huge variety of tests has been performed in order to find suitable methods
implementations, understand which rewards assign and which data observe.
Here are presented two different implementations, one executed at the begin-
ning of the research and the definitive one. With the aim to correctly understand
necessary data for a useful learning, I’ve executed different tests, every time
providing distinct inputs and studying agent’s behavior. This way I’ve created
different implementations, trying to achieve the most useful behavior. For all the
experiments made during my research, the playground was always the same:
the Pong field with two paddles working on it, where each paddle contributes to
the building of the same neural network.

6.4.1 First implementation

On my first implementation, I’ve assigned both agents the following items to
observe:

• Opponent’s Y-axis position (1 parameter)

• Opponent’s velocity (2 parameters)

• Ball’s position (2 parameters)

• Ball’s velocity (2 parameters)

reaching a total of 7 observed parameters.
The set of rewards assigned to agents’ actions is presented in table 6.1

below:

28

6.4. Implementation tests

Reward Condition
+1 player hits the ball
+5 player scores
+2 player comes closer to ball’s Y position
-2 player goes further from ball’s Y position

Table 6.1: Set of rewards defined in the first implementation

An extract of the training log is presented here on table 6.2:

Num STEP TIME ELAPSED MEAN REWARD REWARD STD
1 50000 62.702 s -243.506 376.626
2 100000 119.254 s -396.149 866.985
3 150000 178.011 s -221.295 828.040
4 200000 237.410 s -240.160 1132.579
5 250000 297.554 s 11.087 1142.961
6 300000 356.357 s -46.425 881.249
7 350000 424.000 s 140.331 844.170
8 400000 483.611 s 184.036 1169.185
9 450000 551.613 s 286.787 838.384
10 500000 613.806 s 312.625 1088.825

Table 6.2: Extract of training log resulting from the first implementation

As we can imagine, this reward system definition is very poor, and the be-
havior obtained shows the agents not able to understand ball’s movements,
moving randomly. Obtained this results, it was necessary to make the agents
able to “understand” ball’s movement inside the field, in the same way a human
would do. For example, a real person playing Pong would try to anticipate ball’s
position on his side of the field. This way, the player will already be in position
for ball reception when it will arrive on his side of the field. To emulate this kind
of behavior, first of all we have to obtain the informations about the ball arrival
using a "Raycasting" system. Then, we have to correct the reward system to
teach the agent to go closer to that position. The aim is to create a player able
to anticipate ball’s position and reach it with no difficulty.

6.4.2 Second implementation

Pong Offline, with the new "trajectory-prediction" system, makes the player ob-
serve the following values:

29

6.4. Implementation tests

• Player’s Y position: Agent’s position on the Y axis (1 parameter)

• Ball’s position: (x, y) coordinates (2 parameters)

• Ball’s velocity: in form of a 2-dimensional vector, represents ball’s move-
ment along X and Y axis using some speed (2 parameters)

• Opponent’s position: Agent gets knowledge about other player’s Y axis
position in form of float value (1 parameter)

• Destination: value returned by the Raycasting system. Ideally it is the
position along the Agent’s Y axis where the ball will arrive (1 parameter)

In the end, the total number of observed parameters is equal to 7.
Given all this observations, the reward system is quite different from the

one shown on table 6.1. Instead of reaching the same opponent’s Y position,
the paddle wants to go on the predicted ball’s position. In addition, actions get
new rewards. For example, if a player scores a point, gets a +10 reward in-
stead of +5. The "OnActionReceived" method calculates at each invocation the
distance, in absolute value, between agent’s position and Raycasting algorithm
output two times: at the method start, and after applying the NN output to the
transform’s position. The resulting implementation is shown in listing 6.5:

1 public override void OnActionReceived(ActionBuffers actions) {
2 float yPosition = transform.localPosition.y;
3 float yTargetPosition = target.transform.localPosition.y;
4
5 // Difference between player’s y coord and ball’s y coord before

player’s translation
6 float yOldDiff = Math.Abs(yPosition - yTargetPosition);
7
8 // Translating player
9 float moveY = actions.ContinuousActions[0];

10 transform.localPosition += new Vector3(0, moveY, 0) * Time.
deltaTime * playerSpeed;

11
12 // Difference between player’s y coord and ball’s y coord after

player’s translation
13 yPosition = transform.localPosition.y;
14 yTargetPosition = target.transform.localPosition.y;
15 float yNewDiff = Math.Abs(yPosition - yTargetPosition);
16
17 // If player’s y coord comes closer to to ball’s y coord, it

gets a reward
18 if (yNewDiff <= yOldDiff) { // player is closer to ball’s y

position
19 AddReward(+4); // Reward

30

6.4. Implementation tests

20 } else { // player is further from ball’s y position
21 AddReward(-4); // Penality
22 }
23 }

Listing 6.5: "OnActionReceived" second implementation code

Given the Reinforcement Learning Policy, the agent will know that, at every
rendered frame, it will have to go closer to the computed destination in order
to obtain a positive reward. Thus, the paddle will learn to intercept the ball
and also to wait for it. The scores defined in this second implementation are
collected inside the table 6.3 below.

Score Condition
+4 Closer to the raycasting destination
-4 Further from the raycasting destination
+6 Exactly on the raycasting destination
+10 Made score
-5 Suffers a point
+3 Hits the ball
+3 Never scored a point

Table 6.3: Scores defined for second implementation

An extract of the log obtained runnig the "mlagents-learn" command is
shown here on table 6.4

31

6.5. Raycasting algorithm

Num STEP TIME ELAPSED MEAN REWARD REWARD STD
1 10000 92.994 s 371.400 1468.132
2 100000 566.819 s 354.988 1503.835
3 200000 1078.304 s 310.587 1342.535
4 300000 1615.779 s 540.529 1916.601
5 400000 2127.366 s 550.549 2026.855
6 500000 2638.983 s 222.172 1055.794
7 600000 3152.937 s 410.307 1645.523
8 700000 3695.544 s 755.875 2387.369
9 800000 4210.249 s 249.855 1084.000
10 900000 4711.712 s 639.587 2148.836
11 1000000 5223.487 s 1099.250 2966.666
12 1100000 5734.626 s 471.046 1700.886
13 1200000 6245.336 s 1000.152 2780.156
14 1300000 6754.257 s 521.220 1853.611
15 1400000 7276.392 s 480.516 1759.401

Table 6.4: Extract of training log resulting from the second implementation

Qualitatively talking, the player obtained by this new definition is able to
play both long and short rallies, in a way a human being could play: good or
bad matches. If I created a "perfect player", the collected log would represent
an "ideal" situation, not reachable in reality.

6.5 Raycasting algorithm

The need to create this technique comes because the trained players weren’t
able to reach a satisfying ability to hit the ball, so the aim was to make them
capable to predict ball’s position through a system that indicates where it will
go on their field side. The raycasting system is based on a ray drawn from the
sphere that reflects on the field until it reaches the other player’s side. Raycast
is triggered when the ball hits a paddle. From that, it calculates its new direction
using the classic Pong Reflection rule: it repeatedly reflects (always following
the same rule) on field’s sides, and then intersects a vertical line placed at the
opponent’s X value. This intersection represents the place where the ball will
arrive on the opponent’s side, and that will have to be reached to hit the ball
back. The raytracing script is attached to the "Ball" game object. It keeps track
of right and left paddle destinations values and it upgrades one of them every
time the ball hits a paddle. Players get information about this destination every

32

6.5. Raycasting algorithm

"OnActionReceived" invocation, and ML-Agents reward algorithm gives them a
score if the paddle comes closer to that destination or not.

In order to see the raycasting working, a Unity "LineRender" component is
used. It is a built-in script that draws a interpolated line between two or more
points, as we can see in image 6.2:

Figure 6.2: Raycasting example

6.5.1 Initial Raycasting

The raycasting algorithm is composed by multiple methods used in different sit-
uations. Supposing the ball in position (0, 0) (the center of the field) at the game
start, a first ray is automatically fired in the initial direction, randomly chosen by
the Game Manager. The position that will be reached by the ball is computed by
the "initialRaycast" method. This way, the paddle firstly receiving the ball will be
able to hit it correctly. The “initialRaycast” method implementation is presented
below in the code listing 6.6:

1 // Launches a ray following the given direction
2 // Returns ray intersection Y value with lateral plane
3 public float initialRaycast(Vector2 direction, Vector2 startingPos

) {
4
5 // Enabling line renderer
6 lineRenderer.enabled = true;
7 lineRenderer.sortingOrder = 0;

33

6.5. Raycasting algorithm

8 lineRenderer.positionCount = 2;
9

10 // Getting parent’s (field) position
11 Vector2 parpos = transform.parent.gameObject.transform.

localPosition;
12 Ray ray = new Ray(parpos, direction); // creating a new ray
13 Plane plane;
14
15 if (direction.x < 0) { // Ball is going to the left
16 // Creating plane with normal to the right
17 Vector3 planeNormal = Vector3.right;
18 Vector3 planePoint = new Vector3(parpos.x - 4f, parpos.y, 0);
19 plane = new Plane(planeNormal, planePoint);
20 } else { // ball is going to the right
21 // Creating plane with normal to the left
22 Vector3 planeNormal = Vector3.left;
23 Vector3 planePoint = new Vector3(parpos.x + 4f, parpos.y, 0);
24 plane = new Plane(planeNormal, planePoint);
25 }
26
27 float distance = 0f;
28 Vector3 point = Vector3.zero;
29 // Computing ray intersection with the plane
30 if (plane.Raycast(ray, out distance)) {
31 point = ray.GetPoint(distance); // getting intersection point
32 }
33
34 // Setting up line renderer interpolation points
35 lineRenderer.SetPosition(0, parpos);
36 lineRenderer.SetPosition(1, point);
37
38 return point.y - parpos.y; // returning the destination position

, relative to field’s position
39 }

Listing 6.6: "initialRaycast" method

First of all, the script enables the line renderer and sets it up. Then, given
parent’s position (the field), a Ray object starting from that point and going to
ball’s direction is created. Note that the script often refers to the parent’s po-
sition because ML-Agents lets the user create multiple n field instances inside
the Unity game scene, in order to reduce the training time n times. So, in or-
der to relativize returned results, all calculations are made referring to field’s
position.

Given ball’s direction, we understand if it is going to the left or to the right
player in order to create the correct intersection line, which is represented by a
Plane object with relative position (-4, 0, 0) for the left player and (4, 0, 0) for

34

6.5. Raycasting algorithm

the right player. Values 4 and -4 are default Pong paddles’ positions on the X
axis. Plane is then directed pointing to (0, 0) (to the left for the right one, and
viceversa) through a normal axis. Then, ray-plane intersection is calculated
and relative destination value is returned (not considering parent’s position).

6.5.2 Recursive method

Supposing that the paddle reaches the ball coming from the center of the field
and then hits it back, the "createRayRecursive" method is invoked. Specifically,
it is invoked every time a collider hits the ball. The method implementation is
presented in the following code listing:

1 public float createRayRecursive(Vector2 start, Vector3 normal,
float xPos) {

2 // Setting up line renderer
3 lineRenderer.enabled = true;
4 lineRenderer.sortingOrder = 0;
5 lineRenderer.positionCount = 2;
6
7 // "hit" represents the collision point
8 hit = launchRay(start, normal); // Launching the first ray from

collision point with a paddle, following ball’s direction
9

10 float res = 0f;
11 if (hit) { // if something has been hit
12
13 // Line Renderer management
14 int posCounter = 0; // index where to put line positions
15 lineRenderer.SetPosition(posCounter, start); // setting line

starting point
16 posCounter ++;
17 lineRenderer.SetPosition(posCounter, hit.point); // setting

line new point
18
19 // if one of the players has been hit
20 if (hit.collider.gameObject.name == "Paddle1" || hit.collider.

gameObject.name == "Paddle2") {
21 //First ray already hit opposite plane, calculating

intersection
22 Vector2 parpos = transform.parent.gameObject.transform.

position;
23 float temp = xPos - parpos.x;
24 if (temp > 0) { // Ball has been hit by right player
25 Ray ray = new Ray(start, rigidbody2D.velocity.normalized);
26 res = straightPlaneIntersection(ray, true);
27 } else { // Ball has been hit by left player
28 Ray ray = new Ray(start, rigidbody2D.velocity.normalized);

35

6.5. Raycasting algorithm

29 res = straightPlaneIntersection(ray, false);
30 }
31 } else { // ball hit another collider
32 bool end = false;
33 int i = 0; // counter for maximum number of reflections
34 int maxIter = 50; // maximum number of allowed reflections
35 Vector2 rayStart = hit.point;
36 Vector2 hitNormal = hit.normal;
37
38 Vector2 oldDirection = Vector2.zero; // initializing

variable
39 if (rigidbody2D != null) {
40 oldDirection = rigidbody2D.velocity.normalized;
41 }
42
43 while (end == false) { // until the ray keeps intersecting a

lateral wall
44
45 // Getting old layer info, so an object cannot collide

with itself
46 int oldLayer = hit.collider.gameObject.layer;
47
48 // Setting up a new layer
49 hit.collider.gameObject.layer = LayerMask.NameToLayer("

Ignore Raycast");
50
51 //Creating a new reflected ray and launching it
52 Ray2D ray2 = createReflectedRay(rayStart, hitNormal,

oldDirection);
53 RaycastHit2D hit2 = Physics2D.Raycast(ray2.origin, ray2.

direction);
54 hit.collider.gameObject.layer = oldLayer; // setting up

the old layer back
55
56 if (hit2) { // if something has been hit by the second ray
57 if (hit2.collider.tag == "ScoreWallRight" || hit2.

collider.tag == "ScoreWallLeft"||
58 hit2.collider.tag == "Player1" || hit2.collider.tag

== "Player2") {
59
60 end = true; // Here hit2 represents a collision of a

ray to a lateral wall or player -> exiting from
the cycle

61
62 // Calculating intersection with plane at player x

heigth
63 Vector2 parpos = transform.parent.gameObject.transform

.position;
64 float temp = xPos - parpos.x;

36

6.5. Raycasting algorithm

65 if (temp > 0) { // Ball has been hit by right player
66 res = planeIntersection(rayStart, hitNormal,

oldDirection, true);
67 } else { // Ball has been hit by left player
68 res = planeIntersection(rayStart, hitNormal,

oldDirection, false);
69 }
70 }
71
72 // Preparing the cycle to execute another interaction
73 lineRenderer.positionCount++;
74 posCounter++;
75 lineRenderer.SetPosition(posCounter, hit2.point);
76 oldDirection = ray2.direction;
77 rayStart = hit2.point;
78 hitNormal = hit2.normal;
79 hit = hit2;
80 }
81
82 i++; // upgrading iteration
83 if (i == maxIter) {
84 end = true;
85 }
86 } // end while
87 }
88 }
89 return res;
90 }

Listing 6.7: "createRayRecursive" method

Many of the operations are the same of the "initialRaycast" algorithm. First
of all, a ray is fired following ball’s direction using the auxiliar method "launchRay"
shown below:

1 // Creates and launches a new ray, returning hit point
2 // Start: ray starting point
3 private RaycastHit2D launchRay(Vector2 start) {
4 Vector2 direction = rigidbody2D.velocity.normalized;
5 Ray2D newRay = new Ray2D(start, direction);
6 return Physics2D.Raycast(newRay.origin, newRay.direction);
7 }

Listing 6.8: "launchRay" method

The objective of this function is to draw the direction that the ball will follow
after the collision with a paddle. This method takes as argument the collision
point’s position and fires a ray in the ball’ direction. Note that the direction used
for this specific ray tracing is the ball’s one, and not the reflected one as it could

37

6.5. Raycasting algorithm

be expected, because, at the time of method invocation, the ball is already re-
flected along the new direction. The method "launchRay" returns informations
about what the ray has hit and if there’s some intersection or not. In case an hit
happens, the algorithm continues, following two different execution branches.
In the first situation, the ray has already hit a paddle, so the destination compu-
tation is already possible using the intersection method explained next. In the
other case, one or more other rays have to be fired, so a "while" cycle starts
indicating that the algorithm will fire new rays until a lateral wall or paddle is hit.
This iteration practically defines a broken line that represents ball’s trajectory
inside the field (analogous to the one presented in image 6.2), where this line
is defined by a series of rays where the top of the previous is connected to the
tail of the following. The cycle is structured as follows:

1. Some game object gets a “Ignore Raycast” layer. This way it will not be
considered during ray intersection and the ray won’t stop.

2. A reflected ray is created starting from the previous ray’s intersection
point through the "createReflectedRay", receiving as argument the start-
ing point, the normal vector of the hit object and the ball’s direction before
collision

3. This new reflected ray is thrown and its intersection informations are ob-
tained

4. If the new ray has hit one of the lateral walls or one of the paddles, then
the line intersection with this new ray is calculated and the while cycle can
stop. Otherwise, a new interpolation point is added to the line renderer
and the cycle repeats

Plane intersection is basically calculated the same way as in the "initialRay-
cast" method: a plane on the left or on the right is created, and the intersection
point is returned.

38

Chapter 7

Log files production

As I already explained in chapter 6, players able to play Pong on their own
were created with the objective to record physical quantities values and create
a training dataset. This set of files is created through a specific game object
able to watch all the environment and write values into external files.

7.1 Datasets

A predictive Neural Network composing the MPAI-SPG Digital Twin has to be
able to make a forecast about the Game State, the data set defining all the
values inside the scene. This set of values refers to game objects’ transforms
and quantities associated to the game environment, like, for example, the score.
It can be seen as a game snapshot defined only by numbers. In Pong, the state
is defined by the following features:

1. Ball position: 2D vector defining x and y ball’s position inside the field

2. Ball velocity: 2D vector containing x and y movement of the ball in some
direction. From velocity, when can get the direction removing the speed
information, by normalizing the velocity vector

3. Left paddle position

4. Left paddle velocity

5. Right paddle position

6. Right paddle velocity

39

7.1. Datasets

7. Match state: string defining the condition of the game

8. Left player score: integer containing information about how many points
a player has made, following game’s rules

9. Right player score

10. Hit target: the last side wall that has been hit by the ball (the side of the
last player who lost a point)

The total number of recorded values is equal to 16. Inside the MPAI-SPG
standard, other datasets are defined, some of them containing a subset of the
Game State, like Physics, Behavior and Rules. Specifically, these log files keep
track of the following physical quantities:

Physics Engine:

Physical Quantity Parameters Number
Ball position 2
Ball velocity 2

Left paddle position 2
Left paddle velocity 2

Right paddle position 2
Right paddle velocity 2

Table 7.1: Physics Engine Log structure

Behavior Engine:

Physical Quantity Parameters Number
Left paddle position 2
Left paddle velocity 2

Right paddle position 2
Right paddle velocity 2

Table 7.2: Behaviour Engine Log structure

40

7.2. CSV files

Rules Engine:

Physical Quantity Parameters Number
Match State 1

Left player score 1
Right player score 1

Hit Target 1

Table 7.3: Rules Engine Log structure

Commands:

Physical Quantity Parameters Number
Controller 1 Motion 1
Controller 2 Motion 1

Controller 1 Fire 1
Controller 1 Fire 1

Table 7.4: Commands Log structure

7.2 CSV files

All these collections of data introduced in section 7.1 are written inside external
CSV files.

CSV is a specific file format that separates values using semicolons, com-
mas or tabs and puts them in a tabular format. Each row is formed by a series
of separated values ended with a "newline" escape character. This way it is
easy to organize a huge amount of data in a simple way, because they can be
automatically created through simple scripts. For example, a string defined in
a code as:

1 string row = "1; 2; 3; 4; 5; 6; 7\n"

Listing 7.1: String example

and written on a file with ".csv" extension, will be displayed inside a program
like Microsoft Excel as:

41

7.3. Record Writer

1 2 3 4 5 6 7

Table 7.5: Example of CSV file display

The Log file is defined as follows: given the first row showing columns at-
tributes (the name of the columns), each file row is a record of informations, a
vector, where each position refers to a specific label, given the index. Example
of a complete Pong Game State with an associated record is the one displayed
on table 7.6.

7.3 Record Writer

In order to record data listed in section 7.1, I’ve created a script that gets in-
formations from all the game objects, composes a string containing and sep-
arating them with semicolons, and writes them down on different CSV files,
following the SPG definition. So, at each invocation, a new row is added to the
files "GameState.csv", "PhysicsEngine.csv", "BehaviorEngine.csv", "RulesEn-
gine.csv", "Commands.csv". This custom script is called "RecordWriter.cs" and
extends the "MonoBehaviour" class offered by the Unity framework in order to
attach it to a game object as a component. To keep running multiple instances
of the game at the same time, decreasing the necessary time for log creation,
the script creates at its start a new filename containing a incrementing index,
which depends on the files already present in the log folder. For example, sup-
posed the file "GameState.csv" already exists, a new file "GameState_1.csv"
will be created. This trick enables me to avoid file access conflicts between
different Pong Offline instances running at the same time.

As we can see from code 7.2, the method is implemented as a routine
(IEnumerator), which is invoked at script start. This implementation is caused
by the necessity to record data at a given rate, because of an architectural is-
sue discovered during the Pong Online inference execution (see section 10.2).
Initially, the method was executed as a "FixedUpdate", working at the constant
rate of 50 invocations/second, so the number of collected records was very
high, but testing the neural networks inside the Pong Online implementation,
it was necessary to collect data at a lower rate, requiring a specific delay time
between two following invocations. In order to achieve this behavior, first of all
I’ve recorded the execution time needed by my "writeLogs" method, noticing
that the time from function start to end is equals to few milliseconds, so it is
negligible. After that, I’ve switched the method from "FixedUpdate" to a routine,
because it offers special commands like "WaitForSeconds", (line 38) that en-

42

7.3. Record Writer

B
Po

s
B

Ve
l

LP
Po

s
LP

Ve
l

R
P

Po
s

R
P

Ve
l

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

M
S

LP
S

co
re

R
P

S
co

re
H

itT
ar

ge
t

-1
.2

-0
.3

-3
.2

2.
2

-4
.0

0.
0

0.
0

3.
0

4.
0

0.
0

0.
0

-3
.0

M
S

2
0

R
W

al
l

-1
.2

-0
.3

-3
.2

2.
2

-4
.0

0.
1

0.
0

3.
0

4.
0

-0
.1

0.
0

-3
.0

M
S

2
0

R
W

al
l

-1
.1

-0
.2

-3
.2

2.
2

-4
.0

0.
1

0.
0

3.
0

4.
0

-0
.2

0.
0

-3
.0

M
S

2
0

R
W

al
l

-1
.0

-0
.2

-3
.2

2.
2

-4
.0

0.
2

0.
0

3.
0

4.
0

-0
.1

0.
0

3.
0

M
S

2
0

R
W

al
l

-1
.0

-0
.1

-3
.2

2.
2

-4
.0

0.
3

0.
0

3.
0

4.
0

0.
0

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.9

-0
.1

-3
.2

2.
2

-4
.0

0.
3

0.
0

3.
0

4.
0

0.
0

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.8

0.
0

-3
.2

2.
2

-4
.0

0.
4

0.
0

3.
0

4.
0

0.
1

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.8

0.
0

-3
.2

2.
2

-4
.0

0.
4

0.
0

3.
0

4.
0

0.
1

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.7

0.
0

-3
.2

2.
2

-4
.0

0.
5

0.
0

3.
0

4.
0

0.
2

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.6

0.
1

-3
.2

2.
2

-4
.0

0.
6

0.
0

3.
0

4.
0

0.
3

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.6

0.
1

-3
.2

2.
2

-4
.0

0.
6

0.
0

3.
0

4.
0

0.
3

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.5

0.
2

-3
.2

2.
2

-4
.0

0.
7

0.
0

3.
0

4.
0

0.
4

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.4

0.
2

-3
.2

2.
2

-4
.0

0.
7

0.
0

3.
0

4.
0

0.
4

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.4

0.
3

-3
.2

2.
2

-4
.0

0.
8

0.
0

3.
0

4.
0

0.
5

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.3

0.
3

-3
.2

2.
2

-4
.0

0.
9

0.
0

3.
0

4.
0

0.
6

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.3

0.
4

-3
.2

2.
2

-4
.0

0.
9

0.
0

3.
0

4.
0

0.
6

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.2

0.
4

-3
.2

2.
2

-4
.0

1.
0

0.
0

3.
0

4.
0

0.
7

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.1

0.
4

-3
.2

2.
2

-4
.0

1.
0

0.
0

3.
0

4.
0

0.
7

0.
0

3.
0

M
S

2
0

R
W

al
l

-0
.1

0.
5

-3
.2

2.
2

-4
.0

1.
1

0.
0

3.
0

4.
0

0.
8

0.
0

3.
0

M
S

2
0

R
W

al
l

0.
0

0.
5

-3
.2

2.
2

-4
.0

1.
2

0.
0

3.
0

4.
0

0.
9

0.
0

3.
0

M
S

2
0

R
W

al
l

Ta
bl

e
7.

6:
Po

ng
G

am
e

S
ta

te
ex

tra
ct

43

7.3. Record Writer

ables us to wait for a specific time before executing another invocation. This
way, it is possibile to record game state values at a specific rate, and create a
dataset suitable for the Pong Online execution.

1 IEnumerator writeLogs() {
2 while(true) {
3 // Getting physical quantities informations
4 Vector2 ballPos = ballControl.GetPosition();
5 Vector2 ballVel = ballControl.GetVelocity();
6 Vector2 leftPlayerPos = leftPlayerControl.GetPosition();
7 Vector2 leftPlayerVel = leftPlayerControl.GetVelocity();
8 Vector2 rightPlayerPos = rightPlayerControl.GetPosition();
9 Vector2 rightPlayerVel = rightPlayerControl.GetVelocity();

10 string matchState = "MatchState";
11 string leftPlayerScore = GameManager.PlayerScore1.ToString();
12 string rightPlayerScore = GameManager.PlayerScore2.ToString();
13 string hitTarget = ballControl.getHitTarget();
14 string rightPlayerAction = rightPlayerControl.getAction();
15 string leftPlayerAction = leftPlayerControl.getAction();
16
17 // Composing strings
18 string text = ballPos.x + ";" + ballPos.y + ";" + ballVel.x +

";" + ballVel.y + ";" + leftPlayerPos.x + ";" +
leftPlayerPos.y + ";";

19 text = text + leftPlayerVel.x + ";" + leftPlayerVel.y + ";" +
rightPlayerPos.x + ";" + rightPlayerPos.y + ";" +
rightPlayerVel.x + ";" + rightPlayerVel.y + ";";

20 text = text + matchState + ";" + leftPlayerScore + ";" +
rightPlayerScore + ";" + hitTarget + "\n";

21 File.AppendAllText(gameStateFilename, text);
22
23 string behaviourtext = leftPlayerPos.x + ";" + leftPlayerPos.y

+ ";" + leftPlayerVel.x + ";" + leftPlayerVel.y + ";";
24 behaviourtext = behaviourtext + rightPlayerPos.x + ";" +

rightPlayerPos.y + ";" + rightPlayerVel.x + ";" +
rightPlayerVel.y + "\n";

25 File.AppendAllText(behaviourfilename, behaviourtext);
26
27 string physicsText = ballPos.x + ";" + ballPos.y + ";" +

ballVel.x + ";" + ballVel.y + ";";
28 physicsText = physicsText + leftPlayerPos.x + ";" +

leftPlayerPos.y + ";" + leftPlayerVel.x + ";" +
leftPlayerVel.y + ";";

29 physicsText = physicsText + rightPlayerPos.x + ";" +
rightPlayerPos.y + ";" + rightPlayerVel.x + ";" +
rightPlayerVel.y + "\n";

30 File.AppendAllText(physicsFilename, physicsText);
31
32 string rulesText = matchState+";"+ leftPlayerScore + "; " +

44

7.3. Record Writer

rightPlayerScore + ";" + hitTarget + "\n";
33 File.AppendAllText(rulesFilename, rulesText);
34
35 string commandText = leftPlayerAction + ";" +

rightPlayerAction + ";" + "Null; Null\n";
36 File.AppendAllText(commandsFilename, commandText);
37
38 yield return new WaitForSecondsRealtime(waitTime);
39 }
40 }

Listing 7.2: "writeLogs" method code

As we can see, at each routine invocation, all informations from the vari-
ous game objects are collected. After that, they are casted to string format and
then composed in a unique string divided by semicolons. Once the composition
is completed, each string is written to the specific CSV file using the "Appen-
dAllText" method from the "File" class (see line 21 from code 7.2 in example).
When all the operations are executed, the routine waits for waitTime seconds
before starting another cycle, thanks to the infinite while loop managing the rou-
tine. Supposing to set waitTime to 0.05 seconds, the execution rate is equals
to 20 invocations/seconds, so this way the record rate is much lower than the
FixedUpdate’s one.

Logs record all the games made during the simulation. Referring to the
Pong Offline way of working, we know that every time a game ends, ball’s
transform position is resetted to (0, 0). This can be seen as a resetted state, so,
inside the log files, it won’t be necessary to introduce a "special state" about a
new game because it is implied inside the records themselves.

Here’s an extract from a Physics Engine Log (all values have been truncated
for better visualization):

Ball Pos Ball Vel LP Pos LP Vel RP Pos RP Vel
X Y X Y X Y X Y X Y X Y

-0.6 0.4 -3.2 2.2 -4.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0
-0.6 0.4 -3.2 2.2 -4.0 -0.1 0.0 -3.0 4.0 0.1 0.0 3.0
-0.7 0.5 -3.2 2.2 -4.0 -0.1 0.0 -3.0 4.0 0.1 0.0 3.0
-0.8 0.5 -3.2 2.2 -4.0 -0.2 0.0 -3.0 4.0 0.2 0.0 3.0
0.8 0.6 -3.2 2.2 -4.0 -0.2 0.0 -3.0 4.0 0.2 0.0 3.0
-0.9 0.6 -3.2 2.2 -4.0 -0.3 0.0 -3.0 4.0 0.3 0.0 3.0

Table 7.7: Physics Engine values example

As we can see from this table, some values never change during game

45

7.3. Record Writer

simulation: the right player has always X position equals to +4, while left’s one
is equals to -4, because these two paddles cannot move on the X axis. For the
same reason, players’ X velocity component is always 0. In reality, the values
recorded are way more precise, reaching 5 or 6 decimal numbers, but they are
displayed here with only 1 in order to reach more readability.

In addition, some tests were executed with values rounding or truncation,
but I came back to the original ones in order to avoid problems with spurious
values returned by support rounding methods. The neural networks behavior
also wasn’t improved by this preprocessing operations, so they’re useless.

46

Chapter 8

Refined MPAI-SPG Architecture

Starting from MPAI-SPG initial architecture, shown in the diagram below (image
8.1), we thought about a good Server AI implementation.

Figure 8.1: MPAI-SPG Original Schema

The aim is to train our Digital Twin’s neural networks inside the Server with-
out giving them the exact knowledge about Game Engine’s way of working.
This way the standard would be usable also with new technologies. Mak-
ing references to image 8.1, we can see that the three Online Game Server
components called Physics, Rules and Behaviour Engine (blue boxes) get a
set of input data called GM and return their results as a new set GM’. These
sets of data are different depending on the IDE software used to build the game
(Unity, Unreal Engine, etc.), so we cannot base our standard on those formats
to create a interoperable and long-term usable standard. Instead, we can see
that, independently from the platform used, one thing that will be always visible
is the Game State, so we will base our AI training on that.

47

Refined MPAI-SPG Architecture

Supposing the Game Engine owns the current game state GS, at moment
t the blue "Game State Engine" creates from it a new state GS using user’s
controls CD received from clients. At the same time, the current state GS is sent
to the AI together with CD. The Digital Twin has to create and send back the
next game state GSp at time t+1 without using the same technique applied by
Blue Boxes, but through Prediction instead. This way the AI should work like
a human brain, which creates physics approximations about the world
and doesn’t make calculations about objects’ movements. This could look
like a person who knows the game and, watching it from the outside, knows
how the things should go in order to make the game state consistent. This
forecasted state GSp will be compared with GS in order to understand if there
is some kind of problem with the network or the players.

Referring to the Pong use case and knowing what has to be predicted about
it, we can see that all these informations can be managed by the three AIs:
Physics Engine-AI, Behavior Engine-AI and Rules Engine-AI (green boxes from
image 8.1). After this consideration, we can conclude that the two boxes on the
side ("GameStateEngine-AI" and "GameStateEngine") have not to necessarily
be Predictive AIs.

We studied how we could implement this architecture in real life, and we
arrived at the conclusion that, also in order to keep a different approach from
the one applied by the Online Game Server, the SPG Digital Twin will have to
forecast the next game state knowing the ones generated in the past. Thus,
we’ll have to train our predictive neural networks using this kind of informations:
the logs collected on chapter 7.

Starting from this reasoning, we created a new refined architecture defini-
tion, shown in diagram 8.2 below:

Figure 8.2: MPAI-SPG Refined Architecture

48

8.1. Predictive Neural Networks attributes examples

As we can see from diagram 8.2, the Online Game Server sends to its Pre-
dictive part the entire game state GS N got from the last render, together with
user’s commands CD. Knowning what PhysicsEngine-AI, BehaviourEngine-AI
and RulesEngine-AI have to predict, we can state that each one of them doesn’t
need the entire game state. What has to be performed it’s a subdivision of the
game state between the three AIs, so the green box known as "Game State
Engine-AI" in figure 8.1 becomes the "Dispatcher" or "Divider", whose role
is to feed each NN with input data, named respectively GM1, GM2 and GM3.
The three AIs return each a forecasted subset of the game state data, called
GM1p, GM2p and GM3p. The last thing to do is to join them into a unique
set in order to create the predicted game state GS N+1. This operation is per-
formed by the "GameStateEngine", that in the refined architecture is renamed
as "Composer" or "Collector". Summarizing, each NN will take a subset of
the Game State N and will have to return a subset of the Game State N+1.

The idea is to create an architecture which operates not knowing exactly
what kind of data are shared between the "GameStateEngine" and the three
sub-engines "Physics Engine", "Behaviour Engine" and "Rules Engine" (blue
boxes). Keeping the objective to build a standard, we have to bypass all this
technological constraints, so we thought about all these components together
as a unique “black box” (the "Online Game Server"), just knowing what are the
inputs and the outputs. The inputs are user’s control data, while the output is
the game state.

8.1 Predictive Neural Networks attributes examples

As I explained before and in section 7.1, each of the three sub neural networks
predicts a subset of the rendered game state. Here below are shown the three
AIs’ inputs and an example of the values contained into them (the values are
truncated for readability).

PhysicsEngine:

B Pos B Vel L Pos L Vel R Pos R Vel
X Y X Y X Y X Y X Y X Y

-1.2 -0.3 -3.2 2.2 -4.0 0.0 0.0 3.0 -4.0 0.0 0.0 -3.0

Table 8.1: Physics Engine’s set of attributes with example

49

8.1. Predictive Neural Networks attributes examples

BehaviorEngine:

L Pos L Vel R Pos R Vel
X Y X Y X Y X Y

-4.0 0.0 0.0 3.0 -4.0 0.0 0.0 -3.0

Table 8.2: Behavior Engine’s set of attributes with example

RulesEngine:

MatchState L Score R Score HitTarget
MatchState 2 0 RWall

Table 8.3: Rules Engine’s set of attributes with example

Note: as we can see from these 3 tables, some physical quantities are
repeated betwen the Behavior and Physics Engine. This because I’m referring
to the general MPAI-SPG definition and not the Pong use case. The next part
of this thesis will try to find a suitable architecture for each one of these 3 NNs,
in order to implement the "refined" architeture presented earlier. Each one of
these nets will predict its subset of attributes and the inference outputs will be
combined to create a game state.

50

Chapter 9

Predictive Neural Networks

In order to develop the refined MPAI-SPG architecture explained in chapter 8,
it is necessary to find some suitable network architecture to be used for the
predictions.

9.1 Problem explanation

Given a game state, we can see that it is composed by different kinds of data,
divided in 3 subsets, each one managed by a different neural network. Af-
ter receiving a complete state from the Online Game Server (referring to the
MPAI-SPG schema in figure 4.3) at time N, each neural network has to make a
prediction about values assumed at time N+1 by its data subset.

This tecnique defines a different approach from the one used inside the
Unity Game Engine. As explained in chapter 8, between the Online Game
Server Engine and the 3 subengines there is a data exchange that we don’t
precisely know. In addition, we don’t want to create a standard defined on a
specific technology, but suitable for future implementations and softwares. The
new approach I defined takes a series of game states in input and tries to give
a future approximation about its values without knowing the engines’ way of
working, like human’s brain approximated measures about physics in real life.

Making a concrete example about the forecasting process, let’s analyze
table 9.1, which refers to the Behavior Engine subset:

51

9.2. Neural Networks types

Left Pos Left Vel Right Pos Right Vel
Index X Y X Y X Y X Y

1 -4.0 0.3 0.0 3.0 4.0 0.0 0.0 3.0
2 -4.0 0.3 0.0 3.0 4.0 0.0 0.0 3.0
3 -4.0 0.4 0.0 3.0 4.0 0.1 0.0 3.0
4 -4.0 0.4 0.0 3.0 4.0 0.1 0.0 3.0
5 -4.0 0.5 0.0 3.0 4.0 0.2 0.0 3.0
6 -4.0 0.6 0.0 3.0 4.0 0.3 0.0 3.0

Table 9.1: Behavior Engine data subset example

Supposing the engine has already received as input the last 4 rendered
game states in the last 4 updates (lines 1-4 on table 9.1), once received its
fifth state (line 5), its objective is to predict the 6th state, which is displayed in
line 6. Practically, the engine wants to infer which should be the next set of
values given the ones from the past, overtaking the latency problems that can
occur during game execution. Analyzing table’s columns, each one represents
a monovaried time series, because each one depends only on one variable,
the time. Considering all the columns varying together, we can say that it is a
multivariate time series. Summarizing, the overall objective is to build three
neural networks able to predict the next step of a multivariate time series.

9.2 Neural Networks types

Given all the kinds of Neural Networks developed during the years from AI re-
searchers, the most suitable ones for data forecasting are the Recurrent Neu-
ral Networks (RNN). It is possible also to make predictions using the classical
Multi-Layer Perceptron (MLP), but with worse results. During my research, I’ve
tried to implement a forecasting MLP, but the obtained results are not so satis-
fying and significant, so I avoided to talk about them in this thesis.

Generally talking, there are three main NN typologies: "Supervised Learn-
ing", "Unsupervised Learning" and "Recurrent Neural Networks". Referring to
the first two of them, they differ for the fact that the "Supervised Learning"
stands for a network that learns through labelled examples, meaning that each
input value has got an assigned resulting label defined a priori used to make
output comparison, while the second type "Unsupervised Learning" means that
there’s no assigned known label. Referring to the networks created through
MLAgents, they are an example of Supervised Learning, because through Re-
inforcement Learning we define different labels: the rewards assigned to each

52

9.2. Neural Networks types

action. We’ll talk about the Recurrent Neural Networks in section 9.2.2.
A neural network takes inspiration for its definition from the human brain,

meaning that it is formed by neurons. Thus, considering a NN as a set of
neurons, it is a parallel distributed processor that stores its knowledge inside
weights contained in it. These weights are set up through the "Learning" Phase
first, while they are used in the "Inference" phase next. Given this particular def-
inition, this kind of software is suitable for parallelization through accelerators
like GPUs (see 14.2).

Formally, a neural network is composed by three principal elements:

1. Neuron model: the architecture that defines each network component.
There are different kinds of it, like the "Perceptron" and the "LSTM Cell"

2. NN Architecture: set of neurons connected through weighted links.

3. Learning Algorithm: the procedure that updates weights based on train-
ing data

The different typologies of networks differ on these 3 components: which
kind of neurons compose them, how they are connected and how weights are
updated.

9.2.1 Multilayer Perceptron

In order to talk about the predictive neural networks I created for MPAI-SPG and
all that comes with them, it is convenient to talk about one particular network,
the Multilayer Perceptron (MLP). It is one of the most classical nets created
ever, that brought many features now common in more complex architectures,
so it is useful for contextualization. MLP takes its name by the fact that it is
formed by two distinct elements: a set of neurons and a set of layers.

Perceptron

This is the first neural model ever. It is formally defined by a set of different
elements:

1. inputs x: a input vector containing values. Each vector’s position is con-
nected, through a single weighted link, to an adder function

2. adder function
∑

: executes a linear combination of vector’s positions,
each one of them weighted by the link

53

9.2. Neural Networks types

3. Activation Function f : gets in input the linear combination returned by the
adder function and chooses if the neuron has to be activated or not

The Perceptron structure is defined in image 9.1 shown here below:

Figure 9.1: Perceptron Schema

Mathematically speaking, the action of the single j-th neuron is defined as

yj = ϕ(uj − bj) = ϕ(vj) (9.1)

where:

• yj is the output,

• uj is the result of the linear combination (adder)

• bj is the bias of the j-th neuron, whose objective is to apply an affine
transformation to the weighted sum uj .

• vj is defined as the subtraction of the linear combination uj with its bias
bj

• ϕ is the activation function, that takes in input vj

Specifically, the linear combination of the input vector x with the j-th percep-
tron is defined as

uj =
p∑

i=1

wji × xi (9.2)

where p is the dimension of the vector, wji is the weight that connects the i-
th input vector’s position to the j-th neuron, and xi is the value contained inside
the i-th dimension of the vector.

54

9.2. Neural Networks types

Multilayer

Second fundamental feature of a Multilayer Perceptron is its composition through
a series of 3 different layers, as we can see in image 9.2:

1. Input layer: collects data received in input

2. Hidden Layer: useful for large input layers because it can help extract
higher-order dynamics. Given this layer, it takes us the advantage to
resolve non-linearly separable tasks.

3. Output layer: returns the network output

Figure 9.2: Multilayer Perceptron Architecture

Each layer is fully-connected, meaning that each neuron has got a weighted
link to the all the neurons of the layer behind. This kind of neural network is
called feed-forward, meaning that data flows from the input layer to the output
layer

The typical MLP learning algorithm is the "Backpropagation Algorithm",
whose objective is to look for weight values, inside the neural network, that
minimize the total error over the examples contained in the training set. The
error is represented by the loss function, that we’ll recall also in the next chap-
ters. This algorithm consists of 2 repeated steps:

55

9.2. Neural Networks types

1. "Forward pass": passing as input to the network an example taken from
the dataset, the total error of each neuron is calculated

2. "Backward pass": the network’s weights are updated using the error cal-
culated at the previous step, recursively computing the local gradient of
each weight

9.2.2 Recurrent Neural Networks

Once explained how generically a NN is built, we can talk about another kind of
network typology, which is fundamental in this research. The Recurrent Neural
Network structure is formed by nodes connected in order to form a graph (di-
rected or undirected) in a temporal sequence. That’s why they are suitable for
forecasting. During the years, a huge number of recurrent architectures have
been developed, but the most generic one is the "Fully Recurrent Neural Net-
work". This setup is based on the fact that network outputs are connected to
network inputs, meaning that, during training and inference, the network re-
sults will be influenced by the output of the previous calculation, showing some
kind of temporal dependence in the network.

As we can see in image 9.3, a Recurrent Neural Network takes some input
xt (some input x at time t) and returns the output ht. At the same time, the
network contains a loop that takes information from the network and passes it
to the next step.

Figure 9.3: Recurrent Neural Network structure

Repeating the loop, we can think about the network as a repetition of the
same structure in next time instants, always receiving some information from
the previous step, as we can see in image 9.4:

56

9.2. Neural Networks types

Figure 9.4: Recurrent Neural Network unrolled structure

The classical recurrent network suffers of two problems: the Gradient Ex-
plosion and the Vanishing Gradient, which happen during the Backpropagation
Algorithm execution. In addition, a classic RNN suffers of the short memory
problem, meaning that it has difficulty to remember earlier steps in a long se-
quence.

Vanishing Gradient problem

It is a typical problem for networks that use backpropagation and gradient-
based learning algorithms. It consists in the update value too small to effectively
change the weights and that, in the worst case, won’t change the network at all.
As explained in [12], this kind of problem is caused, for example, by some acti-
vation functions like the Hyperbolic Tangent (see 9.7), which spans in the (0,
1] interval. Knowing that the backpropagation algorithm multiplies these values
through the "Chain Rule", supposed to have a network with n layers defining
it, the gradient signal will exponentially decrease making the training very slow
and inefficient.

Gradient Explosion problem

On the inverse, the Gradient Explosion problem happens when large gradients
accumulate during training, resulting in big weight updates and creating an un-
stable network, meaning that its values will change dramatically from one iter-
ation to the next. An unstable network is basically useless, because it is unable
to make predictions, classifications and all the other kind of tasks. Generally
talking, the gradient based algorithm works well when the updates are small
and controlled.

57

9.2. Neural Networks types

9.2.3 Long Short-Term Neural Networks

Long Short-Term Memory Neural Networks (LSTM NN) are a kind of Recur-
rent Neural Network developed by Sepp Hochreiter and Jurgen Schmidhuber
and presented in their article [3] "Long Short-term Memory" published in 1997.
They were defined in order to overpass the Gradient Explosion, the Vanish-
ing Gradient and the Short Memory problems. They are mainly used as deep
neural networks (nets with more than 2 hidden layers) and they are provided
with feedback connections, thus they can process data sequences and perform
predictions based on time series. Thus, they are suitable for forecasting prob-
lems and Natural Language Processing, because they are able to learn long
temporal sequences.

Unlike other neural network architectures, provided with the classical "Per-
ceptron", LSTMs are composed by a set of neurons based on a model called
"cell", whose schema is presented in figure 9.5.

Figure 9.5: LSTM Cell schema. Red Symbol: sigmoid function. Blue symbol:
tanh function

A cell contains a state and a group of gates that controls the information
flow inside the unit. The cell state has the aim to collect informations taken
from training in a long time, while gates are used to select the relevant informa-
tions. Gates are formed by two different kinds of function: a "Sigmoid" function,
also called "Logistic Function", and a "Hyperbolic Tanget" function, also called
"Tanh".

Sigmoid function is mathematically defined as

σ(z) =
1

1 + e−z
(9.3)

and its plot is displayed in figure 9.6

58

9.2. Neural Networks types

Figure 9.6: Sigmoid function

The sigmoid function is the most classical activation function used in NNs,
and its objective is to normalize values inside the range [0, 1]. Given this char-
acteristic, it is useful for "filtering" operations, deciding what informations delete
multiplying them by 0 and what to keep, multiplying them by 1.

Tanh function, instead, is used to regulate the values flow inside the net-
work, executing a normalization in the range [-1, 1]. It is defined as:

tanh(x) =
sinh(x)

cosh(x)
(9.4)

where sinh(x) is the "hyperbolic sine" function and cosh(x) is the "hyper-
bolic cosine" function. The tanh(x) plot is diplayed in figure 9.7.

Figure 9.7: Hyperbolic Tanget function

Basically, a LSTM Network works like a classic Recurrent Neural Network,
where some data is transmitted forward for next iterations, but using different
operations inside the neurons.

59

9.2. Neural Networks types

9.2.4 LSTM Cells

Every Long Short-Term Memory Network cell owns a state that propagates rel-
evant informations and creates the first improvement brought by LSTMs: they
can maintain information about the oldest data received in input also af-
ter many steps. This fact reduces the "short-memory" problem that affects the
classic RNN.

The information management inside the cell is performed by gates. Any
LSTM cell has got 3 gates: the "input" gate, the "forget" gate and the "output"
gate. Each one of them has a different objective:

1. Forget Gate: decides what is important to keep

2. Input Gate: states what information is relevant to add from the current
step

3. Output Gate: states what the next hidden state should be

The cell keeps track of two different states: an explicit state and an hidden
state. The latter contains informations about previous inputs and it’s used to
make predictions.

Forget Gate

Aim of this gate is to decide what information to keep and what to throw away.
This component works as follows: taking data from the previous hidden state
prevhiddenstate and from the current input, these are summed together and
then passed as argument to the sigmoid function. Knowing the sigmoid func-
tion’s way of working, we know we’ll receive the output data forgetout in the
interval [0, 1]: if forgetout is near to 0, we want to forget, while if it is near
to 1, we want to keep. Summarizing, the operation performed is the following:

forgetout = sigmoid(prevhiddenstate+ input) (9.5)

Input Gate

Also this gate takes the same elements in input: the previous hidden state and
the current input. Two operations are performed inside the gate:

1. Update decision: through sigmoid function, it is decided what values will
be updated passing the two previously cited elements in input. If we
receive back 0, the value won’t be updated, while if we receive 1 it will.
We call the output sigmoidout.

60

9.2. Neural Networks types

2. Regularitzation: this operations has the objective to regularize the net-
work. We take the same input and we pass it to the tanh function in order
to normalize it in [-1, 1]. We call the output tanhout.

Once collected these results, the cell multiplies sigmoidout and tanhout,
with the consequence that basically sigmoidout will "filter" the important infor-
mations from tanhout. Supposing to call the Input Gate’s output inputout, the
operations described can be mathematically written as follows:

sigmoidout = sigmoid(prevhiddenstate+ input) (9.6)

tanhout = tanh(prevhiddenstate+ input) (9.7)

inputout = sigmoidout× tanhout (9.8)

Cell state

Given all the informations calculated so far, we multiply forgetout with the pre-
vious explicit cell state prevstate executing a filtering operation through a point-
wise multiplication that deletes state’s values multiplied near 0. This compu-
tation returns a filtered state which will be added in a pointwise manner with
inputout returning the updated explicit cell state, called updatedstate.

Summarizing all the informations given so far, we can say that the updated
cell state updatedstate is calculated as follows:

updatedstate = forgetout× prevstate+ inputout (9.9)

The cell structure, as we can see from figure 9.5, is built in a way that the
cell state’s output updatedstate takes two different roads: the first one will keep
track of it, becoming the new explicit cell state, while the second one will bring
it to the last step, called "Output Gate".

Output Gate

Objective of this gate is to decide what which be the next hidden state, which
is a set of informations used for predictions. Inside this gate are performed
different operations:

1. execution of the sigmoid function, taking as argument the previous hidden
state and the input of the cell

sigmoidout = sigmoid(prevhiddenstate+ input) (9.10)

61

9.3. Reasons why to choose LSTM NNs

2. execution of the tanh function, passing updatedstate

tanhout = tanh(updatedstate) (9.11)

3. the output of the two previous operations are multiplied together in order
to decide what informations to keep inside the hidden state, returning the
updated hidden state

hiddenstate = sigmoidout× tanhout (9.12)

This new hidden state hiddenstate, together with the new explicit cell state
updatedstate, will go forward to the next cell execution in the following timestep.

9.3 Reasons why to choose LSTM NNs

Summing up all the informations given before, the reasons why I’ve chosen the
LSTM Neural Networks instead of other architectures are:

1. Vanishing Gradient and Gradient Explosion resolution: this kind of net-
work resolves this two tipical problems

2. Longer Memory: LSTMs overpass the "short memory problem", common
in classic RNNs, that’s why they are called "Long Short-Term": they can
remember past input values, allowing us to make better predictions using
a bigger number of past records.

3. Unity execution: even if this kind of network is not guaranteed by Bar-
racuda developers to be executed in a constant and little time, it can be
used through this framework to perform inference inside a Unity project

4. Better results: relating to other architectures, this kind of networks return
better predictions than others, like Multilayer Perceptron for example

62

Chapter 10

Refined architecture
components introduction inside
Pong

After the new Refined MPAI-SPG Architecture was defined, as explained in
chapter 8, I implemented it in Unity in order to execute predictions inside the
game. To do this, I created 5 different scripts, each one representing one com-
ponent of the new architecture:

1. Dispatcher (or Divider)

2. Collector (or Composer)

3. Physics Engine Predictor

4. Behaviour Engine Predictor

5. Rules Engine Predictor

All these scripts extend the C# "MonoBehavior" class defined in the Unity
Framework. This class extension enables the scripts to be attached to a game
object inside a Unity scene. This way, I created an object called "MPAI-SPG
Predictor", which takes all these components and whose task is to get game
state informations, make predictions and return the output.

In the following sections, I’m describing all the implemented scripts.

63

10.1. Dispatcher

10.1 Dispatcher

When enabled, this script activates all the other SPG components, in order to
avoid synchronization problems. At each frame render, the Dispatcher executes
the "updateData" method. As we can see in code listing 10.1, this function gets
status informations, like objects’ position and velocity, and creates 3 different
vectors, that will be used as input by the 3 prediction engines. These vectors
have been formally defined by the MPAI-SPG standard, as already explained in
section 7.1.

1 void OnEnable() {
2 //Activating other SPG Components
3 GetComponent<PhysicsEngine>().enabled = true;
4 GetComponent<BehaviourEngine>().enabled = true;
5 GetComponent<RulesEngine>().enabled = true;
6 GetComponent<Collector>().enabled = true;
7 }
8
9 void Update() {

10 if (ball != null && leftPlayer != null && rightPlayer != null) {
11 // Getting references to game objects’ components
12 ballControl = ball.GetComponent<BallControl>();
13 leftPlayerControl = leftPlayer.GetComponent<PlayerControls>();
14 rightPlayerControl = rightPlayer.GetComponent<PlayerControls

>();
15
16 // Updating physical quantities values
17 updateData();
18
19 // Printing collected data on external files if flag enabled
20 if (writeData) {
21 printDataVectors();
22 }
23 }
24 }
25
26 // Returns input data for the Physics Engine
27 public float[] getPEInputData() {
28 return peDataVector;
29 }
30
31 // Returns input data for the Behaviour Engine
32 public float[] getBEInputData() {
33 return beDataVector;
34 }
35
36 // Returns input data for the Rules Engine

64

10.1. Dispatcher

37 public float[] getREInputData() {
38 return reDataVector;
39 }
40
41 // Updates input data for the 3 engines
42 void updateData() {
43 // Getting updated informations
44 Vector2 ballPos = ballControl.GetPosition();
45 Vector2 ballVel = ballControl.GetVelocity();
46 Vector2 leftPlayerPos = leftPlayerControl.GetPosition();
47 Vector2 leftPlayerVel = leftPlayerControl.GetVelocity();
48 Vector2 rightPlayerPos = rightPlayerControl.GetPosition();
49 Vector2 rightPlayerVel = rightPlayerControl.GetVelocity();
50
51 // Physics Engine’s input data vector creation
52 peDataVector = new float[12];
53 peDataVector[0] = ballPos.x;
54 peDataVector[1] = ballPos.y;
55 peDataVector[2] = ballVel.x;
56 peDataVector[3] = ballVel.y;
57 peDataVector[4] = leftPlayerPos.x;
58 peDataVector[5] = leftPlayerPos.y;
59 peDataVector[6] = leftPlayerVel.x;
60 peDataVector[7] = leftPlayerVel.y;
61 peDataVector[8] = rightPlayerPos.x;
62 peDataVector[9] = rightPlayerPos.y;
63 peDataVector[10] = rightPlayerVel.x;
64 peDataVector[11] = rightPlayerVel.y;
65
66 // Behaviour Engine’s input data vector creation
67 beDataVector = new float[8];
68 beDataVector[0] = leftPlayerPos.x;
69 beDataVector[1] = leftPlayerPos.y;
70 beDataVector[2] = leftPlayerVel.x;
71 beDataVector[3] = leftPlayerVel.y;
72 beDataVector[4] = rightPlayerPos.x;
73 beDataVector[5] = rightPlayerPos.y;
74 beDataVector[6] = rightPlayerVel.x;
75 beDataVector[7] = rightPlayerVel.y;
76
77 // Rules Engine’s Input Data Vector creation
78 reDataVector = new float[4];
79 reDataVector[0] = 0;
80 reDataVector[1] = GameManager.PlayerScore1;
81 reDataVector[2] = GameManager.PlayerScore2;
82 reDataVector[3] = 0;
83 }

Listing 10.1: "Dispatcher" class methods

65

10.2. Prediction Engines

This class also permits each prediction engine to get its new input vector
through the corresponding getter methods defined at lines 27, 32, 37 in code
listing 10.1. In addition, in order to keep track of the data movement, this script
optionally writes down collected values on an external CSV file.

10.2 Prediction Engines

Main part of the Refined MPAI-SPG Architecture implementation, this script has
the objective to make a prediction through data taken from the Dispatcher. This
operation is possible thanks to the Barracuda framework, that enables us to
use a inference engine inside a Unity project.

In this section are explained the different methods composing the "Physic-
sEngine.cs" script. This code also contains support components and methods
adopted to make an analysis of the inference execution, like the "lineRenderer"
tool which is used to draw lines inside the field referring to ball’s trajectory. The
"BehaviorEngine.cs" and "RulesEngine.cs" follow an analogous implementa-
tion.

10.2.1 Start method

1 void Start() {
2 // Inference Engine Setup
3 runtimeModel = ModelLoader.Load(model);
4 engine = WorkerFactory.CreateWorker(runtimeModel, WorkerFactory.

Device.CPU);
5
6 dp = GetComponent<Dispatcher>();
7 cl = GetComponent<Collector>();
8 inputRows = 0; //number of rows currently filling the input

matrix
9

10 // matrix of dimensions [timesteps x featuresNumber] creation
11 // This will be converted into a input tensor
12 this.data = new float[timesteps][];
13 // Input data matrix initialization
14 for (int i = 0; i < timesteps; i++) {
15 this.data[i] = new float[featuresNumber];
16 }
17
18 // Matrix containing the last [timesteps] inference outputs

creation
19 predictionResults = new float[timesteps][];
20 for (int i = 0; i< timesteps; i ++) {

66

10.2. Prediction Engines

21 predictionResults[i] = new float[featuresNumber];
22 }
23
24 // Cleaning data collection file
25 File.WriteAllText(filename, physicsheader);
26 predictionNumber = 0; // index of the last prediction made
27
28 // Cleaning output data collection file
29 File.WriteAllText(predictionFilename, physicsheader);
30
31 // Inference engine output vector creation
32 predictionOutputs = new float[featuresNumber];
33 for (int i = 0; i < featuresNumber; i++) {
34 predictionOutputs[i] = 0;
35 }
36
37 // Line Renderers initialization
38 lr = GetComponent<LineRenderer>(); // draws ball’s predicted

trajectory
39 childLr = transform.GetChild(0).GetComponent<LineRenderer>(); //

draws ball’s correct trajectory
40
41 // Starting prediction routine
42 StartCoroutine(predictionFunctionEnumerator());
43
44 previousTime = 0f; // past inference execution time needed
45 timeList = new List<float>(); // list of previousTime values,

updated after each inference execution
46
47 // Matrix containing ball’s correct positions creation
48 this.correctPositions = new float[timesteps][];
49 for (int i = 0; i < timesteps; i ++) {
50 this.correctPositions[i] = new float[2];
51 }
52 }

Listing 10.2: PhysicsEngine class "Start" method code

The "Start" method is invoked at the script instantiation, and it is used
to initialize all the variables and components. First of all, using the built-in
Barracuda methods, the neural network is loaded, creating the runtimeMo-
del. From this model, the prediction engine is built through the "CreateWorker"
method. After that, the input matrix is initialized. Given the number of time
steps "timesteps" necessary to the network in order to make predictions, and
given the number of features "featuresNumber " the network has to forecast, a
timesteps × featuresNumber matrix is created and initialized with zeros. At
each step, this matrix will be updated with the new values taken from the Dis-

67

10.2. Prediction Engines

patcher. Other matrices are initiliazied in the same way, like correctPositions,
predictionOutputs and predictionResults.

Inside this script are also maintained data structures for time measures
collections, in order to study the general behavior of the script and the neural
networks used.

10.2.2 Prediction routine

1 IEnumerator predictionFunctionEnumerator() {
2 while (true) { // infinite cycle
3 if (inputRows == timesteps) { // input matrix is totally

filled with data
4 // Getting the prediction routine starting time
5 previousTime = Time.realtimeSinceStartup;
6
7 updateDataArray(); // updating matrix with new data from

Dispatcher
8 if (writeLog) {
9 printDataArray(); // printing data on external file

10 }
11
12 // Prediction execution
13 using(var input = createTensor()) { // Creation of the input

tensor
14 // Inference execution
15 Tensor output = engine.Execute(input).PeekOutput();
16
17 // Waiting for prediction completion (Necessary for

IEnumerator execution)
18 yield return new WaitForCompletion(output);
19
20 input.Dispose(); // deleting input matrix
21
22 // Saving prediction results as floats vector
23 predictionOutputs = output.AsFloats();
24
25 output.Dispose(); // deleting output matrix
26
27 // Saving the new output vector inside the output matrix
28 updatePredictionsArray(predictionOutputs);
29 }
30
31 // Calculates and records passed time
32 if (recordDelayTime) {
33 currentTime = Time.realtimeSinceStartup;
34 float passedTime = currentTime - previousTime;
35 timeList.Add(passedTime);

68

10.2. Prediction Engines

36 }
37
38 // Writing prediction outputs on external file
39 if (writeLog) {
40 printResultsRow(predictionOutputs);
41 }
42
43 } else { // Not reached enough input data
44 addDataRow(); // adding new data inside the input matrix
45 }
46
47 // (Necessary for IEnumerator execution)
48 // We don’t need to wait, so it takes 0 as argument
49 yield return new WaitForSeconds(0);
50 }
51 }

Listing 10.3: Prediction Routine code

The Prediction Routine has many tasks to perform:

1. Data matrix management: the integer variable inputRows is maintained
in order to know if the matrix is filled with enough data rows (we need
timesteps of them) and so ready for being used as inference input. inpu-
tRows keeps tracks of how many rows are currently available inside the
input matrix. From the script start, a number of "predictionFunctionEnu-
merator" invocations equals to timesteps has to be performed in order
to collect required data before making a prediction. If inputRows is not
equal to timesteps , then the "addDataRow" method is invoked (see line
44). This method fills the first empty matrix row using data taken from the
Dispatcher and, once completed, inputRows is increased.

On the other side, if the data matrix is already full, the "updateMatrix"
method is invoked. It has the objective to take a new vector from the
Dispatcher and add it to the last matrix row, overwriting it. Before exe-
cuting this operation, matrix rows are translated one position up, so that,
for example, row at position 2 becomes the row at position 1. In other
words, this matrix is a FIFO queue. This way, we can express the time
flow moving up the rows inside the matrix. Given a matrix with rows
indexes from 0 to timesteps excluded, row at position 0 represents the
oldest dataset, while the one at position timesteps-1 contains the newest
vector, with the current game state values. In other words, data rows con-
tained in the upper part of the matrix are older than the ones contained
in the lower part. The presented example graphically shows the update
phenomenon. Suppose the Physics Engine works with a neural network

69

10.2. Prediction Engines

with timesteps = 5. This means that, when the input matrix will contain 5
concrete rows, it will start making predictions. As predictionFunctionEnu-
merator routine starts, the engine takes from the Dispatcher a new values
row and updates the matrix, meaning that each row will be translated one
position up: the result is that, referring to table 10.1, the row at index 0
will be lost, while the new vector will be added in position 4, returning a
situation like the one presented on table 10.2.

Ball Pos Ball Vel L Pos L Vel R Pos R Vel
Index X Y X Y X Y X Y X Y X Y

0 0.0 -1.1 -3.2 2.2 -4.0 0.4 0.0 -3.0 4.0 -0.4 0.0 3.0
1 -0.1 -1.0 -3.2 2.2 -4.0 0.3 0.0 -3.0 4.0 -0.3 0.0 3.0
2 -0.2 -0.9 -3.2 2.2 -4.0 0.2 0.0 -3.0 4.0 -0.2 0.0 3.0
3 -0.3 -0.9 -3.2 2.2 -4.0 0.1 0.0 -3.0 4.0 -0.2 0.0 3.0
4 -0.3 -0.8 -3.2 2.2 -4.0 0.2 0.0 3.0 4.0 -0.1 0.0 3.0

Table 10.1: Physics Engine’s data matrix before update

Ball Pos Ball Vel L Pos L Vel R Pos R Vel
Index X Y X Y X Y X Y X Y X Y

0 -0.1 -1.0 -3.2 2.2 -4.0 0.3 0.0 -3.0 4.0 -0.3 0.0 3.0
1 -0.2 -0.9 -3.2 2.2 -4.0 0.2 0.0 -3.0 4.0 -0.2 0.0 3.0
2 -0.3 -0.9 -3.2 2.2 -4.0 0.1 0.0 -3.0 4.0 -0.2 0.0 3.0
3 -0.3 -0.8 -3.2 2.2 -4.0 0.2 0.0 3.0 4.0 -0.1 0.0 3.0
4 -0.4 -0.8 -3.2 2.2 -4.0 0.3 0.0 3.0 4.0 0.0 0.0 3.0

Table 10.2: Physics Engine’s data matrix after update

Returning to the script 10.3, we note that it also contains a boolean flag,
called networkLatency, which says to the script, if set to true, that SPG
detected some network latency or packet loss, and so it is necessary to fill
the input matrix with the engine’s previous inference outputs. This is basi-
cally the aim of the MPAI-SPG Architecture: being able to determine the
next game state without knowing data received from clients. Other-
wise, if networkLatency is set to false, the script keeps taking new data
from the Dispatcher.

2. Tensor creation: A Tensor is a multimodal (or multidimensional) data
structure used by Barracuda to manage input and output data, and in
general very common inside Machine Learning applications. On each di-

70

10.2. Prediction Engines

mension, this object represents a mode, and we can think about a tensor
as the most general form of matrix. For example, a vector or an array
is a 1D tensor, while a matrix, an array of arrays, is a 2D tensor. At
the same time, a 3D matrix, which pratically is an array of matrices, is
formally defined as a 3D tensor. We can apply this reasoning with an
increasing number of dimensions, also referring to image 10.1, arriving
at the conclusion that a tensor is a multidimensional array.

Figure 10.1: Tensors examples

In order to make Barracuda work, the "createTensor" method is called.
Its task is to create a Tensor with dimensions (1, 1, featuresNumber, time
steps) and fill it up with values contained inside the "data" matrix

3. Prediction: given the new tensor, a prediction is performed using Bar-
racuda "Execute" method and returned as a vector of floating point num-
bers.

4. Data track: at each routine execution, all input and output data are written
inside a CSV file to keep track of the experiments made.

5. Drawings: in order to get a graphical response about the predictions, the
"drawLine" method is invoked with the aim to create an interpolation line
between the ball’s positions collected inside the matrices. On the field
are basically drawn two kinds of information: ball’s correct trajectory, and
ball’s predicted trajectory.

6. Time tracking: with the aim to calculate the time needed by Barracuda
to execute the prediction method using a certain NN, a time difference is
performed between the instant time measured at the method start (see

71

10.2. Prediction Engines

line 5) and the one recorded at method end (see line 34). The difference
is then added to a list of float numbers, which will be written on an external
CSV file at application quit.

The prediction computation through a routine was necessary in order to
make the code asynchronous compared to the main Unity execution thread. I
needed to make it asynchronous because the inference through a LSTM Net-
work is computational expensive and time consuming, making the game freeze
and thus unplayable. With this solution, it is possible to perform predictions
without making the game wait for their completion at each invocation, so SPG
can work indipendently from the Pong main thread.

10.2.3 New Data

1 // Gets a new data vector from Dispatcher
2 float[] getNewData() {
3 float[] res = null;
4 if (networkLatency) {
5 res = new float[featuresNumber];
6 for (int i = 0; i < featuresNumber; i++) {
7 res[i] = predictionOutputs[i];
8 }
9

10 if (inputRows == timesteps) {
11 float[] dispatcherRes = dp.getPEInputData();
12 if (dispatcherRes != null) {
13 // Adding info to correct positions
14 updateCorrectPositionsArray(dispatcherRes);
15 }
16 }
17 } else {
18 res = dp.getPEInputData();
19 if (inputRows == timesteps && res != null) {
20 // Adding info to correct positions
21 updateCorrectPositionsArray(res);
22 }
23 }
24 return res;
25 }

Listing 10.4: "getNewData" method code

The "getNewData" method’s task is to manage the new data row. It can
choose the source where to take data depending on the networkLatency value:

• false: Instantiate a new float array and fills it with data taken from the
Dispatcher through the "getPEInputData" method.

72

10.3. Collector

• true: the new data row will be the last prediction made by the engine

In both the situations, there is the same condition evaluation: if the data
matrix is full (inputRows == timesteps), then the correctPositions array is
updated in the same way the data matrix is updated. This matrix will be used
to draw ball’s trajectories.

When a score is made, the "resetData" method is invoked in order to reset
the input data matrix and make coherent predictions, because the ball will be
in the "resetted" state (0, 0).

Note that in this thesis only the PhysicsEngine script is presented. Referring
to the Rules and Behaviour Engine, they work in an analogous way.

10.3 Collector

Last script of the SPG Architecture, this class has the objective to get outputs
from the 3 engines and collect them inside a new game state, defined as a
16-dimensional vector representing the predicted state. Once created, the
Collector writes the new set of values inside an external CSV file.

1 void Update() {
2 // Getting inference results
3 float[] reResults = re.GetOutput();
4 float[] beResults = be.GetOutput();
5 float[] peResults = pe.GetOutput();
6
7 // If the results are correct and the writeLog flag is enabled
8 if (reResults != null && peResults != null && beResults != null

&& writeLog) {
9 predictionsResults = new float[16];

10 predictionsResults[0] = peResults[0]; // ball x position
11 predictionsResults[1] = peResults[1]; // ball y position
12 predictionsResults[2] = peResults[2]; // ball x velocity
13 predictionsResults[3] = peResults[3]; // ball y velocity
14 predictionsResults[4] = peResults[4]; // leftplayer x position
15 predictionsResults[5] = peResults[5]; // leftplayer y position
16 predictionsResults[6] = peResults[6]; // leftplayer x velocity
17 predictionsResults[7] = peResults[7]; // leftplayer y velocity
18 predictionsResults[8] = peResults[8]; // rightplayer x

position
19 predictionsResults[9] = peResults[9]; // rightplayer y

position
20 predictionsResults[10] = peResults[10]; // rightplayer x

velocity
21 predictionsResults[11] = peResults[11]; // rightplayer y

velocity

73

10.3. Collector

22 predictionsResults[12] = 0; // game state
23 predictionsResults[13] = reResults[0]; // left player Score
24 predictionsResults[14] = reResults[1]; // right player score
25 predictionsResults[15] = 0; // hit target
26
27 // Writing predicted game state inside a CSV file
28 File.AppendAllText(filename, "PREDICTION;NUMBER;" +

predictionNumber.ToString() + "\n");
29 File.AppendAllText(filename, header);
30 predictionNumber++;
31
32 // Casting prediction results to string and then writing them

down into the file
33 string row = "";
34 for (int i = 0; i < 16; i++) {
35 row = row + predictionsResults[i].ToString() + ";";
36 }
37 row = row + "\n";
38 File.AppendAllText(filename, row);
39 }
40 }

Listing 10.5: Collector’s "FixedUpdate" method code

As we can see from the code listing 10.5 above, these operations are per-
formed at each frame render. Also, a boolean flag named "writeLog" is present,
used to control the Collector’s actions from the Unity Inspector. The game state
is parsed into a string and then written into a CSV file.

After introducing these implemented components, we can correctly infer
game states inside the Pong Online and Offline applications, receiving visual
and written feedbacks about the engines’ behaviour. In addition, with simple
code alterations, it could be possible to modify game objects’ transform in order
to enable SPG to modify the game state itself.

74

Chapter 11

Neural Networks Study

In this chapter I will explain the training tests I’ve made in order to find a good
neural network architecture and the tools used. As I introduced in section 3.3, I
adopted the TensorFlow framework to create scripts for networks creation and
test.

TensorFlow, through the Keras Python API, offers three different methods
for NN management:

• "fit": training function executed on a network model previously defined
and that takes as argument: epochs number (number of times to use a
certain dataset during training), batch size (size of the training subsets),
validation set (dataset used for validation)

• "validate": it executes a network test (with data never seen before by
the network) at the end of each epoch. It is automatically invoked if a
validation set is passed as argument to the "fit" method

• "evaluate": method for neural network test, executed at the end of the
training algorithm. It performs a test analogous to validation, using data
never seen before

These three methods define as many different stages of network creation.
Supposing to have a unique set of records generated from the PongOffline
application, it is divided in 3 subsets, each one associated to a stage. Thus,
each phase will use its own dataset to perform its operations. Generally, a
complete dataset is divided in: 60% for training, 20% for validation, 20% for
evaluation.

In general, criterions used to evaluate a NN can be: loss function, accuracy,
and custom metrics. TensorFlow offers a wide variety of evaluation metrics, and

75

11.1. Training script

each one of them is used during the 3 stages defined before. During training,
evaluation and validation, the metrics I adopted are:

• Mean-Squared Error (MSE): it is mathematically defined as

MSE =

∑n
i=1(xi − x̂i)

2

n
(11.1)

where xi is the correct value (in our case, the label), while x̂i is the output
returned by the network

• Mean-Absolute Error (MAE): it is defined as

MAE =

∑n
i=1(xi − x̂i)

n
(11.2)

It is simply an average of the differences between the correct values (xi)
and the outputs (x̂i) returned by the network

• Accuracy: Metric offered by TensorFlow, defined as

accuracy =
frequency

total
(11.3)

where frequency is the number of times the output of the network is
equal to the label, while total is the total number of comparisons made.

11.1 Training script

Once formally defined a Long Short-Term Neural Network in chapter 9 and
the TensorFlow main methods in the previous section, it is time to present the
Python script I created for network training, validation and evalutation and ex-
ecuted inside the NNTA environment (see 14.2). This script is composed by
distinct sections:

1. Input preprocessing (see section 11.1.1)

2. Neural Network definition (see section 11.1.2)

3. Training and Validation (see section 11.1.3)

4. Evaluation (see section 11.1.4)

76

11.1. Training script

11.1.1 Input preprocessing

The dataset is composed by a series of CSV files, each one containing a series
of vectors (records), where each position refers to a different feature or physical
quantity. As explained in chapter 9.1, our LSTM network has to predict a new
vector given an array (a set of ordered vectors) in input, so it is necessary
to create these arrays and associate to each one of them the subsequent vector
to be predicted, the label.

To generate the records sets, I executed at the same time multiple PongOf-
fline instances inside the LPA machine (see section 14.3). Each one of them
generates its own files set. At the end of the generation, given these very big
files, I divided them in files with dimensions around 28MB, each one contain-
ing about 500000 records. The complete dataset is thus composed by multiple
files, not three big ones associated to a SPG network each. One of the reasons
this operation is necessary is that it is practically impossible to allocate all these
informations inside the RAM, because it will generate a memory oveload, so
it is useless to collect all the data inside a single file. In order to avoid this
space problem, TensorFlow offers a useful feature called "Generator", a sort
of iterator that takes a list of files in input and reads them one at a time, thus
reducing the memory space required. This kind of feature is necessary also
on computers like "Neural Network Training Asset" (NNTA), with 32 GB of RAM
available. Once the generator has loaded a file, it executes the preprocessing
operations shown in code listing 11.1, that return a set of 2D arrays, each one
labelled with a vector. Formally, this is a "Supervised Training Algorithm" (see
9.2), where a 2D matrix represents the input object, while the following vector
taken from the CSV file represents the label, the set of values that the network
has to predict.

Given a certain input file, generator’s objective is to create a set of batches,
each one containing batch_size couples of the type (array, label). In order to
execute this operation, it takes a lambda function as argument, the gener-
ate_batches method, together with the set of filenames forming the dataset.
Batch generation is defined in the following code listing:

1 # Given a CSV file line, parses it returning a list of elements
2 def manageLine(line):
3 parsed = []
4
5 # Given a row (string), splits it where ";" is present
6 splitted = line.split(";")
7 i = 0
8 while i < len(splitted): # for each splitted element
9 if i % 2 == 0: # left column

77

11.1. Training script

10 newleft = splitted[i].replace("(", "") # deletes left round
bracket

11 newleft = newleft.replace(",", "") # deletes commas
12 parsed.append(float(newleft)) # float cast
13 else: # right column
14 newRight = splitted[i].replace(")", "") # deletes right

round brackets
15 if "\n" in newRight:
16 newRight = newRight.replace("\n", "") # deletes newline

character
17 parsed.append(float(newRight))
18
19 i = i + 1
20
21 return parsed
22
23 # Returns a list of matrices and a list of associated labels
24 # In the two returned lists, matrix in position i is associated to

label in position i
25 def manageInput(lists, timesteps):
26 resX = list()
27 resY = list()
28 i = 0 # current start position
29 while i < (len(lists) - timesteps): # while it is possible to

build a couple (input, output)
30 currList = []
31 j = 0 # timestep counter
32 while j < time_steps:
33 currList.append(lists[i + j])
34 j = j + 1
35
36 resX.append(numpy.array(currList)) # Note that numpy

automatically deletes 0s from float decimal part
37 resY.append(numpy.array(lists[i+j]))
38
39 i = i + 1 # shift
40
41 return numpy.array(resX), numpy.array(resY)
42
43 # Given a list of filenames, executes input preprocessing one file

at a time
44 def generate_batches(files, batch_size):
45 counter = 0 # file index
46
47 while True: # loops infinitely
48 filename = files[counter] # getting filename
49
50 counter = (counter+1)%len(files)
51 filepointer = open(data_directory + filename, "r") # opens the

78

11.1. Training script

CSV file in "read" mode
52
53 parsedFile = [] # csv file content after first preprocessing
54 header = 0
55 for line in filepointer:
56 if header == 0: # deletes the first line (labels)
57 header = 1
58 else:
59 parsedFile.append(manageLine(line))
60
61 input, output = manageInput(parsedFile, time_steps) # creates

inputs and labels lists
62
63 for local_index in range(0, input.shape[0], batch_size):
64 input_local = input[local_index:(local_index+batch_size)]
65 output_local = output[local_index:(local_index+batch_size)]
66
67 yield input_local, output_local
68
69
70 # Getting dataset filenames
71 files = [] # list of files contained inside "data_directory" path
72 for (dirpath, dirnames, filenames) in os.walk(data_directory):
73 files.extend(filenames)
74 break
75
76 # Divides the files between training set, validation set and

evaluation set
77 # This is necessary because most of the files are used for

training
78 train_files = []
79 validation_files = []
80 test_files = []
81 for i in range(0, len(files)):
82 if (i < training_files_number):
83 train_files.append(files[i])
84 elif (i >= training_files_number and i < (training_files_number

+ validation_files_number)):
85 validation_files.append(files[i])
86 elif (i >= (training_files_number + validation_files_number)):
87 test_files.append(files[i])
88
89 # Calculating steps per epoch for each set:
90 steps_per_epoch_train = 0
91 total_train_records = 0
92 for filename in train_files:
93 lines_number = sum(1 for line in open(data_directory+filename))
94 total_train_records = total_train_records + lines_number
95 steps_per_epoch_train = steps_per_epoch_train + (lines_number/

79

11.1. Training script

batch_size)
96
97 steps_per_epoch_val = 0
98 total_validation_records = 0
99 for filename in validation_files:

100 lines_number = sum(1 for line in open(data_directory+filename))
101 total_validation_records = total_validation_records +

lines_number
102 steps_per_epoch_val = steps_per_epoch_val + (lines_number/

batch_size)
103
104 steps_per_epoch_test = 0
105 total_test_records = 0
106 for filename in test_files:
107 lines_number = sum(1 for line in open(data_directory+filename))
108 total_test_records = total_test_records + lines_number
109 steps_per_epoch_test = steps_per_epoch_test + (lines_number/

batch_size)
110
111
112 # Creating the three different datasets
113 # "output_shapes" are the input and output shapes
114 train_dataset = tf.data.Dataset.from_generator(
115 generator = lambda: generate_batches(files=train_files,

batch_size = batch_size),
116 output_types = (tf.float32, tf.float32),
117 output_shapes = ([None, time_steps, features_number], [None,

features_number])
118)
119
120 validation_dataset = tf.data.Dataset.from_generator(
121 generator = lambda: generate_batches(files=validation_files,

batch_size = batch_size),
122 output_types = (tf.float32, tf.float32),
123 output_shapes = ([None, time_steps, features_number], [None,

features_number])
124)
125
126 test_dataset = tf.data.Dataset.from_generator(
127 generator = lambda: generate_batches(files=test_files,

batch_size = batch_size),
128 output_types = (tf.float32, tf.float32),
129 output_shapes = ([None, time_steps, features_number], [None,

features_number])
130)

Listing 11.1: Input preprocessing

Analyzing the "generate_batches" method, we note that it loops infinitely.

80

11.1. Training script

At each cycle, it gets a filename from the list and opens the corresponding file,
allocating it inside the RAM. Getting a line at a time, executes the "manageLine"
method passing it as argument. Referring to the "RecordWriter.cs" script de-
fined in section 7.3, we can see that the vectors collected from the game state
are parsed in string format through the "toString" method, that inserts round
brackets around physical quantities’ subvectors. For example, supposing to
have a C-Sharp 2D vector Vector2(3f, 4f).ToString(), it is translated into "(3, 4)".
In addition, knowing that these values are written on a CSV file, some escape
characters are added because necessary. The "manageLine" method removes
all these symbols, returning a list of floats.

Once a file has been parsed, obtaining a list of float lists called "parsed-
File", input matrices and labels are created. The "manageInput" method takes
as argument the "parsedFile" list and the timesteps integer, where the latter
is the number of rows of a input matrix for the neural network, the past vec-
tors necessary to make a prediction. Iterating over "parsedFile", this function
takes timesteps following lists and creates an input array through the NumPy
library command "array". This conversion is necessary for Keras execution. In
addition, the method takes the timesteps+1th vector and set it as the output
label. The meaning of this operation is that the network has to be able to
predict the timesteps+1th vector given the past timesteps vectors. The
"manageInput" method will return two lists, with the former containing arrays
and the latter containing vectors, structured in a way that the i-th array is asso-
ciated with the i-th vector, the expected inference result.

The script, receiving in input the dataset folder and the number of train-
ing, validation and test files, creates three lists named "train_files", "valida-
tion_files" and "test_files" respectively. This is necessary in order to count the
total number of records (rows) available for each set and how many steps must
be done in each epoch in order to analyze all the dataset. Keras doesn’t al-
low me to define the epoch dimension a priori because the script doesn’t load
all the dataset, thus it doesn’t have knowledge about the total size. So, given
the total dataset and batches dimensions, I define the epochs size for each
set in the integer variables "steps_per_epoch_train", "steps_per_epoch_val",
"steps_per_epoch_test". Each of them is defined through the following compu-
tation:

StepsPerEpoch =
TotalNumberOfLines

BatchSize
(11.4)

where TotalNumberOfLines is the sum of the rows of the files compos-
ing each subdataset. Finally, the three preprocessed datasets are generated
through the "from_generator" method beloning to the "tf.data.Dataset" Python
class. This function takes as argument the lambda function "generate_batches"

81

11.1. Training script

explained before, the output types and the input and output shapes.

11.1.2 Neural Network definition

Here, the Keras network definition code listing is presented.

1 log_dir = "logs/fit/" + model_name # directory path contaning
training fit logs for Tensorboard execution

2 tensorboard_callback = keras.callbacks.TensorBoard(log_dir=log_dir
, histogram_freq=1) # training logs callback definition

3
4 optimizer = keras.optimizers.Adam(learning_rate=learning_rate) #

optimizer definition
5
6 # Network definition
7 model = Sequential()
8 model.add(LSTM(nodes_number, activation="tanh", return_sequences =

True, input_shape=(time_steps, features_number))
9 model.add(Dropout(dropout_value))

10 model.add(LSTM(nodes_number, activation="tanh", return_sequences =
True))

11 model.add(Dropout(dropout_value))
12 model.add(LSTM(nodes_number, activation="tanh"))
13 model.add(Dropout(dropout_value))
14 model.add(Dense(features_number))
15 model.compile(optimizer=optimizer, loss="mse", metrics=[tf.keras.

metrics.MeanAbsoluteError(), "accuracy"])
16
17 model. summary() # network summary printing
18
19 # early stopping setup
20 es = tf.keras.callbacks.EarlyStopping(monitor="loss", mode="min",

verbose = 1, patience = 10)

Listing 11.2: Model definition and compilation

In this phase, the neural network model is defined and compiled through
the Keras methods. It is a "Sequential" model (the most classical one, meaning
that all the layers are put in a serial manner, where each one takes as input
the output of the past layer). Once created this Python object, a series of
alternating "LSTM" and "Dropout" layers are added. Analyzing a LSTM layer,
it takes as argument the number of nodes, the activation function, the input
shape and the "return_sequence" flag, which is set to true to make the layer
return its state at each step. Analyzing the first LSTM layer (see line 8), we
can see it takes in input an array of dimension timesteps× featuresNumber,
where featuresNumber is the number of dimensions belonging to a input or

82

11.1. Training script

output vector. The other type of layer, "Dropout", has the objective to execute
a dropout operation, meaning that some nodes will be periodically turned off
to avoid network overfitting. The dropout value as argument means the turn off
probability.

In the end, the built network is compiled through the "compile" method,
which takes as argument the optimizer, the loss function and the support met-
rics. The optimizer used is ADAM, the loss is the MSE and the support metrics
are MAE and "Accuracy".

In addition, a special Keras functionality is allocated, called "Early Stop-
ping". It is a function that analyzes the "monitor" target (in this case the loss
function) and stops the training if this doesn’t change enough from one epoch
to the following.

11.1.3 Neural Network training

The listing 11.3 presented below shows the "fit" method with its associated
arguments.

1 model.fit(
2 train_dataset,
3 steps_per_epoch = steps_per_epoch_train,
4 batch_size=batch_size,
5 epochs=epochs_number,
6 verbose=1,
7 validation_data = validation_dataset,
8 validation_steps = steps_per_epoch_val,
9 callbacks=[tensorboard_callback],

10)
11
12 # Saving model in default format
13 model.save(models_path + "_" + model_name)
14
15 # Saving model in a ONNX conversion compatible format
16 tf.saved_model.save(model, onnx_folder_path+

current_saved_models_path+"/"+model_name+"/"+"saved_tf")

Listing 11.3: Model training

Here we can see the real Keras advantage: in addition to the fast network
construction, the training algorithm is all included and represented by the "fit"
method, which takes the following arguments:

1. training dataset: set of couples (input array, output label)

2. steps_per_epoch: number of steps to be executed in each epoch

83

11.2. Neural Networks tests

3. batch_size: dimension of a single batch, a set of data

4. epoch: number of epochs the training algorithm must execute

5. verbose: the type of strings output we want to get on terminal during
training

6. validation_data: the validation dataset built before. Note that, passing
this argument, the "validate" method is automatically invoked at the end
of each training epoch

7. validation_steps: number of steps to be performed in a validation epoch

8. callbacks: set of auxiliar functions to be performed during training. The
only one I use writes the training fit log for Tensorboard execution

Once invoked this method, it starts training the model network and prints
strings on terminal showing progress. At the end of each training epoch, the
validation set is passed in input to the model and the same metrics are com-
puted, enabling us to evaluate the network with unknown data.

11.1.4 Neural Network evaluation

Finally, the last stage is perfomed through the "evaluate" method presented
in the listing below. This function is invoked when the network is completely
trained, and tests it passing in input to the network a set of completely un-
known data. This kind of operation has the objective to understand how the net
behaves "in real life". At the end of evaluation, metrics’ results are printed.

1 ev_results = model.evaluate(test_dataset, batch_size=batch_size)
2 print("Mean Squared error (loss), Mean Absolute Error, Mean

Squared Error, Accuracy: "+str(ev_results))

Listing 11.4: Model evaluation

11.2 Neural Networks tests

Different kinds of architectures were tested during the SPG development. I’ve
executed many trainings with the objective to find the most suitable setup for
game state prediction. In the following sub-sections, I will talk about networks
all based on the most functional structure I created. As we will note, in fact,
the described neural networks are very similar, differing only on the dataset

84

11.2. Neural Networks tests

size and the timesteps in input. All the improvements I made are based on
accuracy maximization, instead of loss minimization: in fact, a network with
minimum loss and 50% of accuracy will be worse than another one with higher
loss but with 90% of accuracy. This point of view is also caused by the fact
that, in order to achieve loss minimization, an increasing number of nodes is
required. This brings to a way higher computational cost (prohibitive also for
a GPU like the NVIDIA Tesla T4 (see 14.2)), and space cost (for example, a
network with 2 layers with 1000 nodes each is 50MB large).

Note that all the explanation I will make refers only to the Physics Engine,
which is the most complex system (given 12 features to predict) among the
three and so the most valuable.

11.2.1 NN4

NN4 is the first important network with the new architecture. Its Keras summary
is the following:

1 __
2 Layer (type) Output Shape Param #
3 ==
4 lstm (LSTM) (None, 20, 50) 12600
5
6 dropout (Dropout) (None, 20, 50) 0
7
8 lstm_1 (LSTM) (None, 20, 50) 20200
9

10 dropout_1 (Dropout) (None, 20, 50) 0
11
12 lstm_2 (LSTM) (None, 50) 20200
13
14 dropout_2 (Dropout) (None, 50) 0
15
16 dense (Dense) (None, 12) 612
17
18 ==
19 Total params: 53,612
20 Trainable params: 53,612
21 Non-trainable params: 0
22 __

Listing 11.5: NN4 Keras summary

We can see that it is formed by 3 LSTM layers, each one of them containing
50 nodes, alternated with 3 Dropout layers. The last component of the network
is a Dense layer that collects results and returns a vector of featuresNumber
size (in case of the Physics Engine, it has got size 12). NN4 takes in input a

85

11.2. Neural Networks tests

3D tensor of dimensions 1× timesteps× featuresNumber. This network has
been trained with 2,5 millions of records, equivalent to about 2400 Pong rallies
and it takes 20 timesteps in input.

NN4’s training was executed passing the following values as argument:

Parameter Value
Input timesteps 20

Features 12
Batch Size 128

Number of epochs 20
Dropout value 0.2

Nodes per layer 50

Table 11.1: NN4 training parameters

Through the command tensorboard we are able to see inside graphs the
movement of MSE, MAE and Accuracy in the three phases of the Python script
I described in listing 11.3.

In picture 11.1 below, we can analyze the loss function variation in NN4
during its training

Figure 11.1: NN4 loss plot. Orange Line: validation loss. Grey Line: training
loss

where the orange line represents the validation loss, while the grey one
represents the training one. On the X axis we have the epoch number, while
on the Y axis the loss value. As we can see from picture 11.1, the grey line
starts from a higher point than the orange one, because in the first epochs the
NN doesn’t know anything about the problem. Already from the first epoch we
can see the validation loss assuming lower values, meaning that the network

86

11.2. Neural Networks tests

has got a good behaviour with data it has never seen and it has already learned
something in the first training iteration.

In picture 11.2, we can observe the network behaviour through the accuracy
metric. Given the same color coding as in the previous plot (11.1), we can
observe that, also in this case, the network has got a good behaviour with
unknown data since from the start, reaching the 99,8% of accuracy in the end,
better than during training.

Figure 11.2: NN4 accuracy plot. Orange Line: validation accuracy. Grey Line:
training accuracy

Concluding the NN4 analysis, we observe the Mean Absolute Value metric
in figure 11.3. There is a huge difference between the training movement (grey
line), reaching 0.41 as minimum value, and the validation one (orange line),
reaching 0.31. This means that the network can infer new states from unknown
data with this margin of error.

Figure 11.3: NN4 Mean Absolute Error plot. Orange Line: validation mean
absolute error. Grey Line: training mean absolute error

87

11.2. Neural Networks tests

11.2.2 NN6

Another important neural network is NN6, a net that is equal to NN4, but that
needs to receive 40 timesteps in input, thus the input tensor will have size
1×40×featuresNumber. I tested this network in order to understand if NN4’s
behaviour could be overpassed, and so to get better predictions, by changing
the number of states got from the past. NN6 summary is displayed in the listing
below:

1 __
2 Layer (type) Output Shape Param #
3 ==
4 lstm (LSTM) (None, 40, 50) 12600
5
6 dropout (Dropout) (None, 40, 50) 0
7
8 lstm_1 (LSTM) (None, 40, 50) 20200
9

10 dropout_1 (Dropout) (None, 40, 50) 0
11
12 lstm_2 (LSTM) (None, 50) 20200
13
14 dropout_2 (Dropout) (None, 50) 0
15
16 dense (Dense) (None, 12) 612
17
18 ===
19 Total params: 53,612
20 Trainable params: 53,612
21 Non-trainable params: 0
22 ___

Listing 11.6: NN6 Keras summary

As we can note, the layers arrangement is not changed. The only difference
is input timesteps number.

Its tensorboard results are displayed in the figures below, where the light
blue line represents training, while the violet one represents validation. We can
still see the differences between validation and training results, with the former
one reaching better values than the latter.

88

11.2. Neural Networks tests

Figure 11.4: NN6 loss plot. Violet Line: validation loss. Lightblue Line: training
loss

Figure 11.5: NN6 Accuracy plot. Violet Line: validation accuracy. Lightblue
Line: training accuracy

As we can note, its loss is slightly better than the NN4’s one. In NN6 we
reach 0.72 as minimum MSE value, while in NN4 it is about 0.75. Referring to
the accuracy, instead, we can see that it is better in NN4 than in NN6. In the
former, looking at plot 11.2, we note that it gets about the 99,8% of correctness,
while in diagram 11.5, it is equal to 99,6%.

Analyzing Inference Engine’s time of execution, we can notice that NN6
takes more time to be executed (around 0.09 seconds) respect to NN4 (around
0.086 second). This leads us to an important result: Barracuda, using LSTM,
takes more time to execute inference with a network which uses more
timesteps than a network that requires less of them. Summing up all the
considerations, we can achieve a smaller loss receiving more input states, but
at the same time reaching worst accuracy. In addition, a network with a bigger

89

11.2. Neural Networks tests

Figure 11.6: NN6 Mean Absolute Error plot. Violet Line: validation mean
absolute error. Lightblue Line: training mean absolute error

input tensor is more computationally expensive, so not suitable for SPG imple-
mentation. Given this consideration, the different time needed for execution will
lead to a different set of input data, because sampled at lower rate, and this
will take us to a wrong behavior by the network. If we want to correctly execute
NN6, we should generate from PongOffline a new dataset containing records
with a different time distance, and then retrain the network.

11.2.3 NN9

This network has the same structure as NN4 (so we can refer to summary
listing 11.5 to understand its architecture), but it is trained with a way higher
number of records. NN9 was created through 20 millions of records, which
corresponds to about 16500 rallies. As we can see from the following graphs,
this network reaches, during validation, loss values around 0.735 and accuracy
values around 99.6%. We note that this values in accuracy are worse than the
ones collected with NN4, but as we will see in chapter 12, regarding ball position
NN9 behaves slightly better than NN4 inside the Pong Online game: it can
predict very well the ball’s correct trajectory, and also basing its predictions on
its past outputs it can create complex and correct trajectories for a few seconds.

90

11.2. Neural Networks tests

Figure 11.7: NN9 Loss function plot. Lightblue Line: validation loss. Red Line:
training loss

Figure 11.8: NN9 Accuracy plot. Lightblue Line: validation accuracy. Red Line:
training accuracy

11.2.4 NN10

Also this network has the same structure as NN4, so again we can refer to
Keras summary 11.5. This is the last net I created and it’s the one trained with
the biggest dataset. In fact, NN10 was trained through 51 millions of records,
corresponding to 31000 rallies. We could imagine that, given the considera-
tions made with NN9, we could achieve better performances than every other
network, but it is not like this. NN10 creates bad predictions and doesn’t behave
very well inside Pong Online.

Looking at figures 11.9 and 11.10, we note that the reached validation val-
ues are worse than the ones collected with the other networks, both in loss and
accuracy. The performances observed are not at the expected level, especially

91

11.2. Neural Networks tests

given the computation effort in order to train this massive net. This brings us to
the result that a bigger training dataset not necessarily brings to better neural
performances, but maybe it’s more about hyperparameters tuning.

Figure 11.9: NN10 Loss function. Green Line: validation loss. Red Line:
training loss

Figure 11.10: NN10 Accuracy. Green Line: validation accuracy. Red Line:
training accuracy

11.2.5 Final results

Comparing together all the 4 neural networks presented in the previous sec-
tions, the resulting plots are the following:

92

11.2. Neural Networks tests

Figure 11.11: Four Neural Networks losses. Green line: NN10 validation loss.
Orange line: NN4 validation loss. Lightblue line: NN9 validation loss. Violet

line: NN6 validation loss

Figure 11.12: Four Neural Networks accuracies. Green line: NN10 validation
accuracy. Orange line: NN4 validation accuracy. Lightblue line: NN9 validation

accuracy. Violet line: NN6 validation accuracy

As we can see from image 11.12, the accuracy reached by NN4 (orange
line) during the validation process is the best ever. NN6 (violet line) and NN9
(lightblue line) reach, at the 20th epoch, comparable results, also if they draw
two different curves: NN6 approximately draws a growing line, while NN9 draws
a more descending one. This means that a bigger number of training records
brings to greater uncertainty inside the predictor, maybe because it knows more
different possible rallies and situations. NN10, instead, reaches the worst ac-
curacy.

93

11.2. Neural Networks tests

Analyzing image 11.11, we note that the network that reached the minimum
loss is NN6, but it isn’t the best also in terms of accuracy. This result states that
a network that uses more timesteps to make predictions, thus looking further
in the past, can achieve better results in term of MSE, but it doesn’t necessary
bring to improved performances in real life applications. So, a network with
minimum loss is not necessary a good network.

The network that reached again the worst result is NN10, which is also the
one trained with the bigger dataset. This bad result could be caused by the fact
that the possible situations it has to learn are a lot, and so the variability is too
high.

Referring to NN9 and NN4, they both obtain loss values in between, while
NN4 has got a better accuracy also if trained with a 10 times smaller dataset.
As we’ll also understand in chapter 12, the neural network creation is based
on hyperparameters and dataset tuning, trying to find the best implementation,
which hopefully works well also in real life applications, and NN4 and NN9 are
the ones that have the best behaviour in Pong Online.

94

Chapter 12

Network latency simulation

The last part of my Master’s Degree project was the introduction of a lag simu-
lator inside Pong Online, with the aim to see MPAI-SPG in action and study its
behavior. This is possible because, once defined the real SPG implementation
inside the Unity project (see chapter 10), the game became a playground for
tests and experiments.

12.1 Client lag simulation

The neural networks study in Pong Online started with the introduction of the lag
simulator. Fortunately, the Photon Library contains some useful tools that en-
able programmers to test the network support in their applications. This tool is
called "Photon Lag Simulation GUI" and it’s a component that can be attached
to a game object present in the game scene. The object we have to choose
has to transmit its information from one application to another, so I decided to
attach the simulator to the "Paddle" prefab inside the Pong Online Client. Re-
ferring to the Photon documentation [9], we can see that this component offers
various functionalities:

1. Lag: Slider that defines a measure (in milliseconds) of the delay that is
added to all the outgoing and incoming messages of the application

2. Jit: Slider that has got the same functionality of "Lag", but the delay value
is chosen randomly up to the maximum value defined by the slider

3. Loss: Slider that sets the drop percentage of the incoming and outgoing
packages.

95

12.2. Server Lag computation

As we can see, with the Photon Lag Simulator GUI it is possible to simulate
both packet latency and loss, so it is perfectly suitable for our use case. This
component is displayed inside the scene as a GUI box on the left side of the
scene containing the three sliders and a button "Simulate" that enables the
"malfunctions". In addition, it shows the current Roundtrip Time (RTT), which
is a measure of the time in milliseconds until a message is aknowledged by the
server.

12.2 Server Lag computation

Once given to the client the tools to execute network disruptions, it was neces-
sary to permit the server to recognize a network lag. This operation is perfomed
inside the "PlayerControl.cs" script, specifically inside the "onPhotonSerialize-
View" method, whose signature is the following:

1 public void OnPhotonSerializeView(PhotonStream stream,
PhotonMessageInfo info) { }

Listing 12.1: "onPhontonSerializeView" method signature

As we can see, the method takes two arguments:

1. stream: the data stream received from the client

2. info: the collection of support informations contained inside the messages
sent from the client. Photon, in fact, doesn’t send only data about the
game objects, but also support informations about the packets transmis-
sion

Formally, the lag is defined as the time occured between the message
shipping and reception. So, known this definition, we can calculate it through
the following formula:

lag = receptionT ime− shippingT ime (12.1)

that can be translated in C-Sharp as:

1 float lag = Mathf.Abs((float)(PhotonNetwork.Time-info.timestamp));

Listing 12.2: Lag computation C# code

where PhotonNetwork.Time represents the Photon instant time when the
"Time" field is accessed, while info.timestamp represents the instant when the
message was shipped from the client. The difference is casted to float type and

96

12.3. Qualitative tests

then the absolute value is returned. Photon activates for each room a counter
that keeps track about a relative time flowing inside the game. Note that there’s
no possibility to get informations about a "universal clock" executing inside the
Photon Framework, common for client and server applications, because it is
not supported inside this free license version of the library. Other paid Photon
libraries offer this tool.

Setting up the maximum lag to 0,2 seconds, which is the universally ac-
cepted value inside the game industry, when the calculated lag is bigger than
this maximum value, MPAI-SPG is activated, meaning that it will start fore-
casting using its past output predictions as input.

In order to avoid conflicts, an SPG activation mechanism based on the
player’s name was created. When the server detects a lag, while activating
the predictor it keeps track of the client’s name causing the problem, bringing
us to the result that SPG can be disabled only by the same player who enabled
it. Through a method called "activatePrediction", which belongs to the "Game-
Manager" class and that takes as argument the player’s name, firstly the nick-
name is compared with the one saved inside a variable and, if they’re equals,
SPG is enabled. The "deactivatePrediction" method works in reverse. This
mechanism is necessary because the Game Manager, which, as I explained,
is the component that activates SPG, constantly receives lag informations from
both clients. Supposing just one of them is having network problems, in a first
time SPG would be activated, but immediately after it would be deactivated be-
cause the other client would send information about good network conditions.
Using this system, SPG remains enabled until the player having problems re-
ports that the latency or packet loss ended.

At this point, the lag prototype is completed: we have two applications
(client and server) able to communicate and share informations about Pong.
In addition, the client can simulate network problems while the server observes
them, consequently enabling the MPAI-SPG system and displaying predicted
informations about the game state inside the server scene.

12.3 Qualitative tests

Once completed the lag simulator integration, it is time to perform some tests
about data collected from Server and Client applications. This kind of exper-
iments explores in a qualitative manner the predictive behaviour of the Digital
Twin. The tests I’m gonna perform firstly collect information about Server’s and
Client’s game states, and then compare them calculating errors and plotting
diagrams. In particular, I wanna study the ball’s behavior and see what are

97

12.3. Qualitative tests

the differences between its transform’s position and velocity taken respectively
from the predictor’s output and the Pong correct execution.

These tests plot different diagrams that show the transform’s components
evolution during some time interval. In images 12.3 and 12.6 I plotted 4 different
cartesian diagrams. Each one of them refers, on the X axis, to the PhotonNet-
work.Time value, while the Y axis is different for each plot, referring respectively
to: position’s x component, position’s y component, velocity’s x component, ve-
locity’s y component.

Position diagrams:

Figure 12.1: X position diagram Figure 12.2: Y position diagram

Figure 12.3: Ideal Client-Server situation, position

Velocity diagrams:

Figure 12.4: X velocity diagram Figure 12.5: Y velocity diagram

Figure 12.6: Ideal Client-Server situation, velocity

98

12.3. Qualitative tests

These diagrams have been plotted with the MPAI-SPG not enabled, and
thus we can note that the orange and blue curves, in each plot, are practically
identical. They were generated from two CSV files created from client and
server applications respectively. An extract of these two logs is shown in tables
12.1 and 12.2.

PhotonNetwork.Time Ball XPos Ball YPos Ball XVel Ball YVel
524099.011 0.07300802 -0.07502481 -3.2 -2.2
524099.111 -0.292412 -0.3262511 -3.2 -2.2
524099.214 -0.6558896 -0.5761419 -3.2 -2.2
524099.318 -0.9730166 -0.7941667 -3.2 -2.2
524099.417 -1.32386 -1.035372 -3.2 -2.2

Table 12.1: Client Test Log extract

PhotonNetwork.Time Ball XPos Ball YPos Ball XVel Ball YVel
524099.078 -0.626489 -0.5559291 -3.2 -2.2
524099.194 -0.9977667 -0.8111826 -3.2 -2.2
524099.328 -1.426083 -1.10565 -3.2 -2.2
524099.456 -1.834453 -1.386405 -3.2 -2.2
524099.557 -2.157968 -1.608821 -3.2 -2.2

Table 12.2: Server Test Log extract

Looking at the two tables, we can note that the PhotonNetwork.Time values
contained into them are different: even if the integer part is identical, the deci-
mal part is not the same and increases in dissimilar manners. This means that
the two collections are taken at different time instants. As I already explained in
section 12.2, PhotonNetwork.Time is a property feeded by the Photon frame-
work that refers to room’s time. For these plots, this value is referring to the
instant when the transform’s values were recorded inside the CSV files. It is
important to note that these values aren’t the same between client and server
for two main reasons:

1. it is a computation made in milliseconds, so the precision required is too
high to obtain a perfect corrispondence between the time recorded from
the two applications

2. the logs are generated through two different scripts performed into an
asychronous way: inside the client application, I use the "BallControls.cs"

99

12.4. Error computation

script, while in the server I use a Inference Engine, in order to be able to
get SPG inference results. This means that the two sets of values are
recorded in different time instants

This time difference is visible in plots 12.3 and 12.6, where the two curves
are not perfectly aligned on the X axis because interpolated from different time
instants.

Once created the files, the 4 physical quantities are plotted through the
MatPlotLib.pyplot library imported into a Python script. This library enables us
to draw different curves inside the same graph. So, having a series of (time,
value) couples, this framework can automatically interpolate a line passing be-
tween these points in a 2D cartesian diagram. For example, supposing to plot
the position’s x component, I parsed the two log files obtaining a list of tuples
of the type (timestamp, position.x value) and then I inserted them inside the
pyplot figure obtaining a diagram like 12.1.

Ideally, collecting SPG results, we would like to achieve situations like the
ones presented in figures 12.3 and 12.6, where the orange and the blue lines
draw identical curves, shifted on the X axis. This could be possible if SPG was
able to make incredibly correct predictions, emulating the Pong behavior.

12.4 Error computation

Once obtained the log files, I used them also to calculate three different met-
rics, in order to understand what’s the mathematical difference between the
curves contained in the plots that will be shown in section 12.5. I calculated
the already presented Mean-Squared-Error, Mean-Absolute-Error and the Root
Mean-Squared Error.

Knowing how the log files are composed, in order to calculate this metrics
I interpolated the client’s values on the server’s PhotonNetwork.Time times-
tamps through the NumPy library method "interp". This way, I obtained a floats
list of the same length as the server’s one containing values referring to the
same time instants. Once executed the interpolations, I calculated the metrics.
The results are presented in the following section.

100

12.5. Neural Networks results

12.5 Neural Networks results

In the following figures are displayed the results obtained making inference
inside Pong Online through the neural networks presented in chapter 11.

The diagrams have been generated through logs with the same structure
shown in tables 12.1 and 12.2, but, concerning server’s files, they contain SPG
forecast results. The orange lines (client’s position and velocity x and y com-
ponents) show the "correct" Pong position, the ideal situation we would like to
achieve with the SPG predictor.

The tests made have been performed executing both server and client ap-
plications on NNTA machine (14.2), thus not considering more complex network
situations.

12.5.1 NN4

Position diagrams:

Figure 12.7: X position diagram Figure 12.8: Y position diagram

Figure 12.9: NN4 resulting diagrams, ball position

101

12.5. Neural Networks results

Velocity diagrams:

Figure 12.10: X velocity diagram Figure 12.11: Y velocity diagram

Figure 12.12: NN4 resulting diagrams, ball velocity

As we can see from figures 12.9 and 12.12, the server line (blue one) tries
to achieve the ideal situation (orange line), even if with a high degree of error.

The resulting metrics are the following:

Physical Quantity MSE RMSE MAE
Position X 4.6729 2.1617 1.9551
Position Y 8.6911 2.9480 2.6927
Velocity X 3.7908 1.9470 1.3350
Velocity Y 1.6866 1.2987 1.0570

Table 12.3: NN4 simulation resulting metrics

102

12.5. Neural Networks results

12.5.2 NN6

Position diagrams:

Figure 12.13: X position diagram Figure 12.14: Y position diagram

Figure 12.15: NN6 resulting diagrams, ball position

Velocity diagrams:

Figure 12.16: X velocity diagram Figure 12.17: Y velocity diagram

Figure 12.18: NN6 resulting diagrams, ball velocity

Analyzing figures 12.15 and 12.18, we note that they show worse results
than the ones displayed in NN4’s diagrams. This means that the NN4’s predic-
tion is better than the NN6’s one. We arrived at this conclusion also in chapter
11 comparing loss and accuracy plots. We can conclude that a network that
reaches a better accuracy instead of a better loss during training and evaluta-
tion will get better results also in real life applications.

103

12.5. Neural Networks results

This concept can be inferred also looking at the following metrics:

Physical Quantity MSE RMSE MAE
Position X 6.5696 2.5631 2.2273
Position Y 10.4737 3.2363 2.8833
Velocity X 4.3364 2.0824 1.4037
Velocity Y 2.4380 1.5614 1.3552

Table 12.4: NN6 simulation resulting metrics

where we can note higher errors than the ones collected in table 12.3.

12.5.3 NN9

Position diagrams:

Figure 12.19: X position diagram Figure 12.20: Y position diagram

Figure 12.21: NN9 resulting diagrams, ball position

104

12.5. Neural Networks results

Velocity diagrams:

Figure 12.22: X velocity diagram Figure 12.23: Y velocity diagram

Figure 12.24: NN9 resulting diagrams, ball velocity

NN9 is able to create a X position curve that is closer to the ideal one than
the analogous one displayed inside the NN4 diagram 12.7. Also the Y position
diagram is, in some intervals, better than NN4 (see plot 12.8), but it reaches
deeper points than the orange valleys.

The metrics resulting form NN9 execution are the following:

Physical Quantity MSE RMSE MAE
Position X 3.2654 1.8070 1.6356
Position Y 7.6057 2.7578 2.5060
Velocity X 5.5167 2.3487 1.7562
Velocity Y 1.8532 1.3613 1.1371

Table 12.5: NN9 simulation resulting metrics

Comparing tables 12.5 and 12.3, we note that, concerning transform’s po-
sition, NN9 reaches better results tha NN4, while referring to velocity, the latter
returns better results than the former, also if, graphically talking, NN9’s velocity
plots seem to be closer to the ideal line. Thus, we could say that these two
neural networks behave in a similar way in real life, and they are both better
then NN6.

105

12.5. Neural Networks results

12.5.4 NN10

Position diagrams:

Figure 12.25: X position diagram Figure 12.26: Y position diagram

Figure 12.27: NN10 resulting diagrams, ball position

Velocity diagrams:

Figure 12.28: X velocity diagram Figure 12.29: Y velocity diagram

Figure 12.30: NN10 resulting diagrams, ball velocity

Finally, here are displayed the results obtained for NN10, a neural network
architecturally identical to NN9, but trained with more simulation data. Referring
to figure 12.28, the x velocity, the server line is very close to the orange one,
also reaching better results than NN9 if we analyze metrics contained inside
table 12.6. Looking at the other 3 physical quantities, instead, the collected re-
sults are, on the contrary, worse in NN10 than in NN9, reaffirming the resulting
concepts presented in chapter 11.

106

12.5. Neural Networks results

The resulting metrics are the following:

Physical Quantity MSE RMSE MAE
Position X 4.7701 2.1840 2.0072
Position Y 9.8411 3.1370 2.8373
Velocity X 4.4681 2.1138 1.4941
Velocity Y 2.3392 1.5294 1.3078

Table 12.6: NN10 simulation resulting metrics

In conclusion, introducing the 4 neural networks inside a real life environ-
ment, we confirmed the results obtained from their study during training and
evaluation: NN4 and NN9 are the ones that behave in the best way, each one
of them making better predictions regarding to different physical quantities. In
addition, we can also say that a greater number of timesteps in input or a larger
training dataset doesn’t necessary lead us to finer inference results.

107

Chapter 13

Conclusion and future works

Inside this Master’s Degree project we talked about the MPAI-SPG theorical
and practical definition, applying it to the Pong Online use case. We talked
about what is the objective of this research, the tools needed and the initial
Digital Twin Architecture. We explained how the classical Pong game works
and how automatic players can be created in order to easily create a dataset
for neural networks training. We introduced my adjustments to the architec-
ture and its real implementation inside the Online version of the Pong project in
Unity. In the end, we introduced the neural networks definition, studying their
behavior both with training data and inside the "real life" application. We found
out a good architecture able to predict the game states for a little time interval
and now the MPAI-SPG prototype is able to infer how the game should behave
when a network problem occurs and eventually correct the game state (details
not explained in this thesis). In the future, this work for the MPAI standard can
be improved finding out new and more suitable predictive architectures and an
anti-cheating system can be introduced in order to make the Pong rules re-
spected. In the future, after the General Assembly approval, the SPG project
will advance to the "Call for technologies" step, asking to the videogame in-
dustries to implement their own SPG prototype and study it in a commercial
way.

108

Chapter 14

Machines

In this chapter are listed the computers used during this Master thesis research.
Thanks to the Universtity of Turin’s Computer Science Department it was possi-
ble to access to the computers inside their Computational Center, instantiating
two Virtual Machines named "NNTA" and "LPA" respectively.

14.1 Macbook Pro

Macbook Pro 13" 2017 Edition with Processor Intel i7 dual-core, RAM 16 GB
DDR3 and Intel Iris Plus Graphics 640 1536 MB.

14.2 NNTA

"Neural Network Training Asset" Virtual Machine with i7 processor, 32GB RAM
and NVIDIA Tesla T4 GPU, 50Gb of primary memory and 1TB of storage mem-
ory, running Windows 10 2016 Server Edition. This machine was used to ex-
ecute Neural Network trainings, through the Tesla T4, and Pong Online test
runs.

14.3 LPA

"Logs Production Asset" Virtual Machine with i7 processor, 32GB RAM, 50Gb
of primary memory and 1TB of storage memory, running Windows 10 2016
Server Edition. This machine was used to produce logs forming the training
dataset, running 4 Pong Offline instances at the same time.

109

Chapter 15

Ringraziamenti

Ringrazio i professori Maurizio Lucenteforte, Davide Cavagnino, Marco
Mazzaglia e Leonardo Chiariglione per avermi accompagnato prima durante il

percorso magistrale e poi in questo lungo progetto, trasmettendomi la
passione per l’Informatica che spero potrò conservare e coltivare nel futuro.

Grazie a papà per averci creduto dal giorno 0.
Grazie a mamma per essere la mia spalla.

Grazie a Carlo e Maria per essere un grande esempio da seguire.
Grazie al Bunkereeno Kollektiv e la Di Gran Carriera per esserci nei momenti

felici e tristi.
Grazie alla Musica per essere una sempre fedele compagna di viaggio su cui

poter contare.

E’ nei momenti di incertezza che si vedono le verità di ognuno: le pareti si
stringono, le menti si allargano.

Le nostre preoccupazioni diventano schermo di ciò che avremmo potuto e
vorremmo essere.

Sta a noi decidere che cosa guardare.

"Detesta il vuoto dei rumori della realtà, ma col volume a stecca può
sopravvivere"

(Subsonica, "Aurora Sogna", 1999)

Dichiaro di essere responsabile del contenuto dell’elaborato che presento
al fine del conseguimento del titolo, di non avere plagiato in tutto o in parte
il lavoro prodotto da altri e di aver citato le fonti originali in modo congruente
alle normative vigenti in materia di plagio e di diritto d’autore. Sono inoltre
consapevole che nel caso la mia dichiarazione risultasse mendace, potrei in-
correre nelle sanzioni previste dalla legge e la mia ammissione alla prova finale
potrebbe essere negata.

Bibliography

[1] Authoritative Server definition. URL: https://doc.photonengine.
com/zh-CN/bolt/current/troubleshooting/authoritative-
server-faq (visited on 01/22/2022).

[2] Gambetta Lag Compensation. URL: https://www.gabrielgambetta.
com/client-server-game-architecture.html (visited on
02/08/2022).

[3] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”.
In: Neural computation 9 (Dec. 1997), pp. 1735–80. DOI: 10.1162/
neco.1997.9.8.1735.

[4] ML-Agents Framework Official documentation. URL: https://github.
com/Unity-Technologies/ml-agents (visited on 02/16/2022).

[5] ML-Agents Glossary. URL: https://github.com/Unity-Technologies/
ml-agents/blob/main/docs/Glossary.md.

[6] ML-Agents Learning Algorithms. URL: https://github.com/Unity-
Technologies/ml-agents/blob/main/docs/ML-Agents-
Overview.md#training-methods-environment-agnostic.

[7] ML-Agents Reinforcement Learning official documentation. URL: https:
//github.com/Unity-Technologies/ml-agents/blob/
main/docs/Background-Machine-Learning.md.

[8] MPAI Official Website. URL: https://mpai.community/ (visited on
01/10/2022).

[9] Photon Lag Simulation GUI Official documentation. URL: https://
doc.photonengine.com/en-us/pun/v1/troubleshooting/
photon-lag-simulation-gui (visited on 02/25/2022).

[10] Photon Unity Framework official site. URL: https://www.photonengine.
com/pun.

112

Bibliography

[11] tf2. URL: https://www.guru99.com/what-is-tensorflow.
html#:~:text=TensorFlow%20is%20an%20open%2Dsource,
inference%20of%20deep%20neural%20networks. (visited on
01/22/2022).

[12] Vanishing Gradient problem explanation. URL: https://en.wikipedia.
org/wiki/Vanishing_gradient_problem.

113

